Sequencing meets machine learning to fight emerging pathogens: A preview
In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of com...
Gespeichert in:
Veröffentlicht in: | Patterns (New York, N.Y.) N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100448 |
---|---|
container_issue | 2 |
container_start_page | 100448 |
container_title | Patterns (New York, N.Y.) |
container_volume | 3 |
creator | Yakimovich, Artur |
description | In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.
In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens. |
doi_str_mv | 10.1016/j.patter.2022.100448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8832723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666389922000216</els_id><sourcerecordid>2629388335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBAIUOkfIJQjlxa_k3BAQoiXhMQBOFuOs05d5VFsF8Tf46hQ4MLJ1uzszO4OQscEzwkm8mw5X-kYwc8ppjRBmPNiBx1SKeWMFWW5--t_gKYhLDHGVBBSSrKPDpggssxFfojunuB1Db1xfZN1ADFknTYL10PWgvb9CMchs65ZxAw68M2IJO_F0EAfzrPLbOXhzcH7Edqzug0w_Xon6OXm-vnqbvbweHt_dfkwM4zTOOOiyGubhsEaV9ZYSkUlgAqQ3HBtqqqCvDZQirK2DCzLweQgCitrUnLCGZugi43ual11kKh99LpVK-867T_UoJ36W-ndQjXDmyoKRnM6Cpx-CfghrR6i6lww0La6h2EdFJW0ZInMRKLyDdX4IQQPdmtDsBpzUEu1yUGNOahNDqnt5PeI26bvq__sAOlQ6XheBeNSCFA7DyaqenD_O3wCxjOdJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629388335</pqid></control><display><type>article</type><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yakimovich, Artur</creator><creatorcontrib>Yakimovich, Artur</creatorcontrib><description>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.
In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</description><identifier>ISSN: 2666-3899</identifier><identifier>EISSN: 2666-3899</identifier><identifier>DOI: 10.1016/j.patter.2022.100448</identifier><identifier>PMID: 35169757</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Preview</subject><ispartof>Patterns (New York, N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448</ispartof><rights>2022 The Author</rights><rights>2022 The Author.</rights><rights>2022 The Author 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832723/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35169757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yakimovich, Artur</creatorcontrib><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><title>Patterns (New York, N.Y.)</title><addtitle>Patterns (N Y)</addtitle><description>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.
In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</description><subject>Preview</subject><issn>2666-3899</issn><issn>2666-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQtBAIUOkfIJQjlxa_k3BAQoiXhMQBOFuOs05d5VFsF8Tf46hQ4MLJ1uzszO4OQscEzwkm8mw5X-kYwc8ppjRBmPNiBx1SKeWMFWW5--t_gKYhLDHGVBBSSrKPDpggssxFfojunuB1Db1xfZN1ADFknTYL10PWgvb9CMchs65ZxAw68M2IJO_F0EAfzrPLbOXhzcH7Edqzug0w_Xon6OXm-vnqbvbweHt_dfkwM4zTOOOiyGubhsEaV9ZYSkUlgAqQ3HBtqqqCvDZQirK2DCzLweQgCitrUnLCGZugi43ual11kKh99LpVK-867T_UoJ36W-ndQjXDmyoKRnM6Cpx-CfghrR6i6lww0La6h2EdFJW0ZInMRKLyDdX4IQQPdmtDsBpzUEu1yUGNOahNDqnt5PeI26bvq__sAOlQ6XheBeNSCFA7DyaqenD_O3wCxjOdJw</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>Yakimovich, Artur</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220211</creationdate><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><author>Yakimovich, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Preview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakimovich, Artur</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Patterns (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakimovich, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequencing meets machine learning to fight emerging pathogens: A preview</atitle><jtitle>Patterns (New York, N.Y.)</jtitle><addtitle>Patterns (N Y)</addtitle><date>2022-02-11</date><risdate>2022</risdate><volume>3</volume><issue>2</issue><spage>100448</spage><epage>100448</epage><pages>100448-100448</pages><artnum>100448</artnum><issn>2666-3899</issn><eissn>2666-3899</eissn><abstract>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.
In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35169757</pmid><doi>10.1016/j.patter.2022.100448</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-3899 |
ispartof | Patterns (New York, N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448 |
issn | 2666-3899 2666-3899 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8832723 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Preview |
title | Sequencing meets machine learning to fight emerging pathogens: A preview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequencing%20meets%20machine%20learning%20to%20fight%20emerging%20pathogens:%20A%20preview&rft.jtitle=Patterns%20(New%20York,%20N.Y.)&rft.au=Yakimovich,%20Artur&rft.date=2022-02-11&rft.volume=3&rft.issue=2&rft.spage=100448&rft.epage=100448&rft.pages=100448-100448&rft.artnum=100448&rft.issn=2666-3899&rft.eissn=2666-3899&rft_id=info:doi/10.1016/j.patter.2022.100448&rft_dat=%3Cproquest_pubme%3E2629388335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629388335&rft_id=info:pmid/35169757&rft_els_id=S2666389922000216&rfr_iscdi=true |