Sequencing meets machine learning to fight emerging pathogens: A preview

In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Patterns (New York, N.Y.) N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448
1. Verfasser: Yakimovich, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100448
container_issue 2
container_start_page 100448
container_title Patterns (New York, N.Y.)
container_volume 3
creator Yakimovich, Artur
description In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens. In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.
doi_str_mv 10.1016/j.patter.2022.100448
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8832723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666389922000216</els_id><sourcerecordid>2629388335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBAIUOkfIJQjlxa_k3BAQoiXhMQBOFuOs05d5VFsF8Tf46hQ4MLJ1uzszO4OQscEzwkm8mw5X-kYwc8ppjRBmPNiBx1SKeWMFWW5--t_gKYhLDHGVBBSSrKPDpggssxFfojunuB1Db1xfZN1ADFknTYL10PWgvb9CMchs65ZxAw68M2IJO_F0EAfzrPLbOXhzcH7Edqzug0w_Xon6OXm-vnqbvbweHt_dfkwM4zTOOOiyGubhsEaV9ZYSkUlgAqQ3HBtqqqCvDZQirK2DCzLweQgCitrUnLCGZugi43ual11kKh99LpVK-867T_UoJ36W-ndQjXDmyoKRnM6Cpx-CfghrR6i6lww0La6h2EdFJW0ZInMRKLyDdX4IQQPdmtDsBpzUEu1yUGNOahNDqnt5PeI26bvq__sAOlQ6XheBeNSCFA7DyaqenD_O3wCxjOdJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629388335</pqid></control><display><type>article</type><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yakimovich, Artur</creator><creatorcontrib>Yakimovich, Artur</creatorcontrib><description>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens. In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</description><identifier>ISSN: 2666-3899</identifier><identifier>EISSN: 2666-3899</identifier><identifier>DOI: 10.1016/j.patter.2022.100448</identifier><identifier>PMID: 35169757</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Preview</subject><ispartof>Patterns (New York, N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448</ispartof><rights>2022 The Author</rights><rights>2022 The Author.</rights><rights>2022 The Author 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832723/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35169757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yakimovich, Artur</creatorcontrib><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><title>Patterns (New York, N.Y.)</title><addtitle>Patterns (N Y)</addtitle><description>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens. In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</description><subject>Preview</subject><issn>2666-3899</issn><issn>2666-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQtBAIUOkfIJQjlxa_k3BAQoiXhMQBOFuOs05d5VFsF8Tf46hQ4MLJ1uzszO4OQscEzwkm8mw5X-kYwc8ppjRBmPNiBx1SKeWMFWW5--t_gKYhLDHGVBBSSrKPDpggssxFfojunuB1Db1xfZN1ADFknTYL10PWgvb9CMchs65ZxAw68M2IJO_F0EAfzrPLbOXhzcH7Edqzug0w_Xon6OXm-vnqbvbweHt_dfkwM4zTOOOiyGubhsEaV9ZYSkUlgAqQ3HBtqqqCvDZQirK2DCzLweQgCitrUnLCGZugi43ual11kKh99LpVK-867T_UoJ36W-ndQjXDmyoKRnM6Cpx-CfghrR6i6lww0La6h2EdFJW0ZInMRKLyDdX4IQQPdmtDsBpzUEu1yUGNOahNDqnt5PeI26bvq__sAOlQ6XheBeNSCFA7DyaqenD_O3wCxjOdJw</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>Yakimovich, Artur</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220211</creationdate><title>Sequencing meets machine learning to fight emerging pathogens: A preview</title><author>Yakimovich, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4587df0000a0bfcf225b5e25e64c4acbbbe7dce959df3ef37ec7e58f6d1941433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Preview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakimovich, Artur</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Patterns (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakimovich, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequencing meets machine learning to fight emerging pathogens: A preview</atitle><jtitle>Patterns (New York, N.Y.)</jtitle><addtitle>Patterns (N Y)</addtitle><date>2022-02-11</date><risdate>2022</risdate><volume>3</volume><issue>2</issue><spage>100448</spage><epage>100448</epage><pages>100448-100448</pages><artnum>100448</artnum><issn>2666-3899</issn><eissn>2666-3899</eissn><abstract>In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens. In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35169757</pmid><doi>10.1016/j.patter.2022.100448</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3899
ispartof Patterns (New York, N.Y.), 2022-02, Vol.3 (2), p.100448-100448, Article 100448
issn 2666-3899
2666-3899
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8832723
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Preview
title Sequencing meets machine learning to fight emerging pathogens: A preview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequencing%20meets%20machine%20learning%20to%20fight%20emerging%20pathogens:%20A%20preview&rft.jtitle=Patterns%20(New%20York,%20N.Y.)&rft.au=Yakimovich,%20Artur&rft.date=2022-02-11&rft.volume=3&rft.issue=2&rft.spage=100448&rft.epage=100448&rft.pages=100448-100448&rft.artnum=100448&rft.issn=2666-3899&rft.eissn=2666-3899&rft_id=info:doi/10.1016/j.patter.2022.100448&rft_dat=%3Cproquest_pubme%3E2629388335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629388335&rft_id=info:pmid/35169757&rft_els_id=S2666389922000216&rfr_iscdi=true