CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii

Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2022-02, Vol.188 (2), p.1081-1094
Hauptverfasser: Yamano, Takashi, Toyokawa, Chihana, Shimamura, Daisuke, Matsuoka, Toshiki, Fukuzawa, Hideya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue 2
container_start_page 1081
container_title Plant physiology (Bethesda)
container_volume 188
creator Yamano, Takashi
Toyokawa, Chihana
Shimamura, Daisuke
Matsuoka, Toshiki
Fukuzawa, Hideya
description Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.
doi_str_mv 10.1093/plphys/kiab528
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599072728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</originalsourceid><addsrcrecordid>eNpVUU2LFDEQDaK44-rVo_TRg71bSTp2chHcxo-Fgb3oOVQn6e2s3UlMeoT590ZmXBQKqop69eoVj5DXFK4oKH6dljQfy_UPj6Ng8gnZUcFZy0Qnn5IdQK1BSnVBXpTyAACU0-45ueBdr6gA2JGH4Y611iUXrAtbs_r7jJuPocFgm-yWaE5tnJr9cHvzrsEmHbML0ds2uezT7DIuTcpxcz40NYZ5wfVo4xoDlkrhw4zZbt6_JM8mXIp7dc6X5PvnT9-Gr-3-7svt8HHfmqpoay1I46QdLRMcrZxQCvHeSdNLOnaKcwWdVSCRKqMAUUzd2HfOWDBiYkA7fkk-nHjTYVydNfWvKlGn7FfMRx3R6_8nwc_6Pv7SUjLBBFSCt2eCHH8eXNn06otxy4LBxUPRTCgFPeuZrNCrE9TkWEp20-MZCvqPQfpkkD4bVBfe_CvuEf7XEf4bwk-Rag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599072728</pqid></control><display><type>article</type><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</creator><creatorcontrib>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</creatorcontrib><description>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab528</identifier><identifier>PMID: 34791500</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Carbon Dioxide - metabolism ; Carbonic Anhydrases - genetics ; Carbonic Anhydrases - metabolism ; Cell Movement - drug effects ; Cell Movement - genetics ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Regular Issue Content</subject><ispartof>Plant physiology (Bethesda), 2022-02, Vol.188 (2), p.1081-1094</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</citedby><cites>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</cites><orcidid>0000-0001-6578-8095 ; 0000-0001-5664-7565 ; 0000-0003-0963-5662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34791500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Toyokawa, Chihana</creatorcontrib><creatorcontrib>Shimamura, Daisuke</creatorcontrib><creatorcontrib>Matsuoka, Toshiki</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</description><subject>Carbon Dioxide - metabolism</subject><subject>Carbonic Anhydrases - genetics</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - genetics</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Regular Issue Content</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU2LFDEQDaK44-rVo_TRg71bSTp2chHcxo-Fgb3oOVQn6e2s3UlMeoT590ZmXBQKqop69eoVj5DXFK4oKH6dljQfy_UPj6Ng8gnZUcFZy0Qnn5IdQK1BSnVBXpTyAACU0-45ueBdr6gA2JGH4Y611iUXrAtbs_r7jJuPocFgm-yWaE5tnJr9cHvzrsEmHbML0ds2uezT7DIuTcpxcz40NYZ5wfVo4xoDlkrhw4zZbt6_JM8mXIp7dc6X5PvnT9-Gr-3-7svt8HHfmqpoay1I46QdLRMcrZxQCvHeSdNLOnaKcwWdVSCRKqMAUUzd2HfOWDBiYkA7fkk-nHjTYVydNfWvKlGn7FfMRx3R6_8nwc_6Pv7SUjLBBFSCt2eCHH8eXNn06otxy4LBxUPRTCgFPeuZrNCrE9TkWEp20-MZCvqPQfpkkD4bVBfe_CvuEf7XEf4bwk-Rag</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Yamano, Takashi</creator><creator>Toyokawa, Chihana</creator><creator>Shimamura, Daisuke</creator><creator>Matsuoka, Toshiki</creator><creator>Fukuzawa, Hideya</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6578-8095</orcidid><orcidid>https://orcid.org/0000-0001-5664-7565</orcidid><orcidid>https://orcid.org/0000-0003-0963-5662</orcidid></search><sort><creationdate>20220204</creationdate><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><author>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon Dioxide - metabolism</topic><topic>Carbonic Anhydrases - genetics</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - genetics</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Regular Issue Content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Toyokawa, Chihana</creatorcontrib><creatorcontrib>Shimamura, Daisuke</creatorcontrib><creatorcontrib>Matsuoka, Toshiki</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Takashi</au><au>Toyokawa, Chihana</au><au>Shimamura, Daisuke</au><au>Matsuoka, Toshiki</au><au>Fukuzawa, Hideya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>188</volume><issue>2</issue><spage>1081</spage><epage>1094</epage><pages>1081-1094</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34791500</pmid><doi>10.1093/plphys/kiab528</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6578-8095</orcidid><orcidid>https://orcid.org/0000-0001-5664-7565</orcidid><orcidid>https://orcid.org/0000-0003-0963-5662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2022-02, Vol.188 (2), p.1081-1094
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825250
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Carbon Dioxide - metabolism
Carbonic Anhydrases - genetics
Carbonic Anhydrases - metabolism
Cell Movement - drug effects
Cell Movement - genetics
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Chloroplasts - genetics
Chloroplasts - metabolism
Gene Expression Regulation, Plant
Genes, Plant
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Regular Issue Content
title CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2-dependent%20migration%20and%20relocation%20of%20LCIB,%20a%20pyrenoid-peripheral%20protein%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Yamano,%20Takashi&rft.date=2022-02-04&rft.volume=188&rft.issue=2&rft.spage=1081&rft.epage=1094&rft.pages=1081-1094&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab528&rft_dat=%3Cproquest_pubme%3E2599072728%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599072728&rft_id=info:pmid/34791500&rfr_iscdi=true