CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2022-02, Vol.188 (2), p.1081-1094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1094 |
---|---|
container_issue | 2 |
container_start_page | 1081 |
container_title | Plant physiology (Bethesda) |
container_volume | 188 |
creator | Yamano, Takashi Toyokawa, Chihana Shimamura, Daisuke Matsuoka, Toshiki Fukuzawa, Hideya |
description | Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary. |
doi_str_mv | 10.1093/plphys/kiab528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599072728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</originalsourceid><addsrcrecordid>eNpVUU2LFDEQDaK44-rVo_TRg71bSTp2chHcxo-Fgb3oOVQn6e2s3UlMeoT590ZmXBQKqop69eoVj5DXFK4oKH6dljQfy_UPj6Ng8gnZUcFZy0Qnn5IdQK1BSnVBXpTyAACU0-45ueBdr6gA2JGH4Y611iUXrAtbs_r7jJuPocFgm-yWaE5tnJr9cHvzrsEmHbML0ds2uezT7DIuTcpxcz40NYZ5wfVo4xoDlkrhw4zZbt6_JM8mXIp7dc6X5PvnT9-Gr-3-7svt8HHfmqpoay1I46QdLRMcrZxQCvHeSdNLOnaKcwWdVSCRKqMAUUzd2HfOWDBiYkA7fkk-nHjTYVydNfWvKlGn7FfMRx3R6_8nwc_6Pv7SUjLBBFSCt2eCHH8eXNn06otxy4LBxUPRTCgFPeuZrNCrE9TkWEp20-MZCvqPQfpkkD4bVBfe_CvuEf7XEf4bwk-Rag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599072728</pqid></control><display><type>article</type><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</creator><creatorcontrib>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</creatorcontrib><description>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab528</identifier><identifier>PMID: 34791500</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Carbon Dioxide - metabolism ; Carbonic Anhydrases - genetics ; Carbonic Anhydrases - metabolism ; Cell Movement - drug effects ; Cell Movement - genetics ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Regular Issue Content</subject><ispartof>Plant physiology (Bethesda), 2022-02, Vol.188 (2), p.1081-1094</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</citedby><cites>FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</cites><orcidid>0000-0001-6578-8095 ; 0000-0001-5664-7565 ; 0000-0003-0963-5662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34791500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Toyokawa, Chihana</creatorcontrib><creatorcontrib>Shimamura, Daisuke</creatorcontrib><creatorcontrib>Matsuoka, Toshiki</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</description><subject>Carbon Dioxide - metabolism</subject><subject>Carbonic Anhydrases - genetics</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - genetics</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Regular Issue Content</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU2LFDEQDaK44-rVo_TRg71bSTp2chHcxo-Fgb3oOVQn6e2s3UlMeoT590ZmXBQKqop69eoVj5DXFK4oKH6dljQfy_UPj6Ng8gnZUcFZy0Qnn5IdQK1BSnVBXpTyAACU0-45ueBdr6gA2JGH4Y611iUXrAtbs_r7jJuPocFgm-yWaE5tnJr9cHvzrsEmHbML0ds2uezT7DIuTcpxcz40NYZ5wfVo4xoDlkrhw4zZbt6_JM8mXIp7dc6X5PvnT9-Gr-3-7svt8HHfmqpoay1I46QdLRMcrZxQCvHeSdNLOnaKcwWdVSCRKqMAUUzd2HfOWDBiYkA7fkk-nHjTYVydNfWvKlGn7FfMRx3R6_8nwc_6Pv7SUjLBBFSCt2eCHH8eXNn06otxy4LBxUPRTCgFPeuZrNCrE9TkWEp20-MZCvqPQfpkkD4bVBfe_CvuEf7XEf4bwk-Rag</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Yamano, Takashi</creator><creator>Toyokawa, Chihana</creator><creator>Shimamura, Daisuke</creator><creator>Matsuoka, Toshiki</creator><creator>Fukuzawa, Hideya</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6578-8095</orcidid><orcidid>https://orcid.org/0000-0001-5664-7565</orcidid><orcidid>https://orcid.org/0000-0003-0963-5662</orcidid></search><sort><creationdate>20220204</creationdate><title>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</title><author>Yamano, Takashi ; Toyokawa, Chihana ; Shimamura, Daisuke ; Matsuoka, Toshiki ; Fukuzawa, Hideya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d08ce8dbd253ad8fa8556e8c781b4933904d908a19c90aa5f4b74ecd0c5f20143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon Dioxide - metabolism</topic><topic>Carbonic Anhydrases - genetics</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - genetics</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Regular Issue Content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Toyokawa, Chihana</creatorcontrib><creatorcontrib>Shimamura, Daisuke</creatorcontrib><creatorcontrib>Matsuoka, Toshiki</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamano, Takashi</au><au>Toyokawa, Chihana</au><au>Shimamura, Daisuke</au><au>Matsuoka, Toshiki</au><au>Fukuzawa, Hideya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>188</volume><issue>2</issue><spage>1081</spage><epage>1094</epage><pages>1081-1094</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34791500</pmid><doi>10.1093/plphys/kiab528</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6578-8095</orcidid><orcidid>https://orcid.org/0000-0001-5664-7565</orcidid><orcidid>https://orcid.org/0000-0003-0963-5662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2022-02, Vol.188 (2), p.1081-1094 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825250 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Carbon Dioxide - metabolism Carbonic Anhydrases - genetics Carbonic Anhydrases - metabolism Cell Movement - drug effects Cell Movement - genetics Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Chloroplasts - genetics Chloroplasts - metabolism Gene Expression Regulation, Plant Genes, Plant Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Regular Issue Content |
title | CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2-dependent%20migration%20and%20relocation%20of%20LCIB,%20a%20pyrenoid-peripheral%20protein%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Yamano,%20Takashi&rft.date=2022-02-04&rft.volume=188&rft.issue=2&rft.spage=1081&rft.epage=1094&rft.pages=1081-1094&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab528&rft_dat=%3Cproquest_pubme%3E2599072728%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599072728&rft_id=info:pmid/34791500&rfr_iscdi=true |