Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase

Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2022-02, Vol.31 (2), p.384-395
Hauptverfasser: Singh, Prashant K., Ahmad, Nayeem, Yamini, Shavait, Singh, Rashmi P., Singh, Amit K., Sharma, Pradeep, Smith, Michael L., Sharma, Sujata, Singh, Tej P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 2
container_start_page 384
container_title Protein science
container_volume 31
creator Singh, Prashant K.
Ahmad, Nayeem
Yamini, Shavait
Singh, Rashmi P.
Singh, Amit K.
Sharma, Pradeep
Smith, Michael L.
Sharma, Sujata
Singh, Tej P.
description Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2O2) to convert thiocyanate (SCN−) and iodide (I−) ions into the oxidizing compounds hypothiocyanite (OSCN−) and hypoiodite (IO−). Previously determined structures of the complexes of LPO with SCN−, OSCN−, and I− show that SCN− and I− occupy appropriate positions in the distal heme cavity as substrates while OSCN− binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO− as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2O2, then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG‐3350, 20% (wt/vol). These crystals were used for X‐ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2′‐azino‐bis(3‐ethylbenzthiazoline‐sulfonic acid)), in the presence of hypoiodite and iodide ions. PDB Code(s): 7VE3;
doi_str_mv 10.1002/pro.4230
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8819834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625991704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-4190522e187da8b00597bae1a7a401fb16fce36cbfb82959f2e2f2069f9cb2b3</originalsourceid><addsrcrecordid>eNp1kc1O3DAQgC1UBFtaqU-AIvXCJWA7Xse-IFWI_khIoJZDb5btjLtGSbw4ztLceASesU9ShwVEDz2NZubzN2MNQh8IPiYY05N1DMeMVngHLQjjshSS_3yDFlhyUoqKi330dhhuMMaM0GoP7Ves5oQxtkDTjxRHm8ao2wI2voHeQhFckVY5_PaNTj70c8GHJneLOfN9CsVqWkP8c_8QQdvkNzAXwgylLWSmotNdp1uv-2IFHRRtBkN-9Kgd4B3adbod4P1TPEDXn8-vz76WF5dfvp19uigtqwQuGZF4SSkQUTdaGIyXsjYaiK41w8QZwp2FilvjjKByKR0F6ijm0klrqKkO0OlWux5NB42FPuW_qnX0nY6TCtqrfzu9X6lfYaOEIFJULAs-PgliuB1hSOomjLHPKyvK6VJKUuOZOtpSNoZhiOBeJhCs5hvlPKj5Rhk9fL3RC_h8lAyUW-DOtzD9V6Suvl8-Cv8CA0efvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625991704</pqid></control><display><type>article</type><title>Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Singh, Prashant K. ; Ahmad, Nayeem ; Yamini, Shavait ; Singh, Rashmi P. ; Singh, Amit K. ; Sharma, Pradeep ; Smith, Michael L. ; Sharma, Sujata ; Singh, Tej P.</creator><creatorcontrib>Singh, Prashant K. ; Ahmad, Nayeem ; Yamini, Shavait ; Singh, Rashmi P. ; Singh, Amit K. ; Sharma, Pradeep ; Smith, Michael L. ; Sharma, Sujata ; Singh, Tej P.</creatorcontrib><description>Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2O2) to convert thiocyanate (SCN−) and iodide (I−) ions into the oxidizing compounds hypothiocyanite (OSCN−) and hypoiodite (IO−). Previously determined structures of the complexes of LPO with SCN−, OSCN−, and I− show that SCN− and I− occupy appropriate positions in the distal heme cavity as substrates while OSCN− binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO− as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2O2, then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG‐3350, 20% (wt/vol). These crystals were used for X‐ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2′‐azino‐bis(3‐ethylbenzthiazoline‐sulfonic acid)), in the presence of hypoiodite and iodide ions. PDB Code(s): 7VE3;</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4230</identifier><identifier>PMID: 34761444</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ammonium ; Animals ; Binding sites ; Catalysis ; Colorimetry ; Crystal structure ; Crystallization ; Crystallography, X-Ray ; Crystals ; Data collection ; Full‐Length Paper ; Full‐Length Papers ; Gastric juice ; Heme ; Heme - chemistry ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; inhibition mechanism ; innate immunity ; Iodides ; Iodine Compounds ; Ions ; lactoperoxidase ; Lactoperoxidase - chemistry ; Lactoperoxidase - metabolism ; Mammals ; Mucosa ; mucosal immunology ; Oxidation ; Oxidation-Reduction ; Peroxidase ; Saliva ; Structural analysis ; Substrate inhibition ; Substrates ; Sulfonic acid ; Thiocyanates ; viral immunology</subject><ispartof>Protein science, 2022-02, Vol.31 (2), p.384-395</ispartof><rights>2021 The Protein Society.</rights><rights>2022 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-4190522e187da8b00597bae1a7a401fb16fce36cbfb82959f2e2f2069f9cb2b3</citedby><cites>FETCH-LOGICAL-c4380-4190522e187da8b00597bae1a7a401fb16fce36cbfb82959f2e2f2069f9cb2b3</cites><orcidid>0000-0001-9873-7323 ; 0000-0001-6627-0669 ; 0000-0002-2886-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819834/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819834/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34761444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Prashant K.</creatorcontrib><creatorcontrib>Ahmad, Nayeem</creatorcontrib><creatorcontrib>Yamini, Shavait</creatorcontrib><creatorcontrib>Singh, Rashmi P.</creatorcontrib><creatorcontrib>Singh, Amit K.</creatorcontrib><creatorcontrib>Sharma, Pradeep</creatorcontrib><creatorcontrib>Smith, Michael L.</creatorcontrib><creatorcontrib>Sharma, Sujata</creatorcontrib><creatorcontrib>Singh, Tej P.</creatorcontrib><title>Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2O2) to convert thiocyanate (SCN−) and iodide (I−) ions into the oxidizing compounds hypothiocyanite (OSCN−) and hypoiodite (IO−). Previously determined structures of the complexes of LPO with SCN−, OSCN−, and I− show that SCN− and I− occupy appropriate positions in the distal heme cavity as substrates while OSCN− binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO− as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2O2, then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG‐3350, 20% (wt/vol). These crystals were used for X‐ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2′‐azino‐bis(3‐ethylbenzthiazoline‐sulfonic acid)), in the presence of hypoiodite and iodide ions. PDB Code(s): 7VE3;</description><subject>Ammonium</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Catalysis</subject><subject>Colorimetry</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Data collection</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Gastric juice</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>inhibition mechanism</subject><subject>innate immunity</subject><subject>Iodides</subject><subject>Iodine Compounds</subject><subject>Ions</subject><subject>lactoperoxidase</subject><subject>Lactoperoxidase - chemistry</subject><subject>Lactoperoxidase - metabolism</subject><subject>Mammals</subject><subject>Mucosa</subject><subject>mucosal immunology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxidase</subject><subject>Saliva</subject><subject>Structural analysis</subject><subject>Substrate inhibition</subject><subject>Substrates</subject><subject>Sulfonic acid</subject><subject>Thiocyanates</subject><subject>viral immunology</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O3DAQgC1UBFtaqU-AIvXCJWA7Xse-IFWI_khIoJZDb5btjLtGSbw4ztLceASesU9ShwVEDz2NZubzN2MNQh8IPiYY05N1DMeMVngHLQjjshSS_3yDFlhyUoqKi330dhhuMMaM0GoP7Ves5oQxtkDTjxRHm8ao2wI2voHeQhFckVY5_PaNTj70c8GHJneLOfN9CsVqWkP8c_8QQdvkNzAXwgylLWSmotNdp1uv-2IFHRRtBkN-9Kgd4B3adbod4P1TPEDXn8-vz76WF5dfvp19uigtqwQuGZF4SSkQUTdaGIyXsjYaiK41w8QZwp2FilvjjKByKR0F6ijm0klrqKkO0OlWux5NB42FPuW_qnX0nY6TCtqrfzu9X6lfYaOEIFJULAs-PgliuB1hSOomjLHPKyvK6VJKUuOZOtpSNoZhiOBeJhCs5hvlPKj5Rhk9fL3RC_h8lAyUW-DOtzD9V6Suvl8-Cv8CA0efvw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Singh, Prashant K.</creator><creator>Ahmad, Nayeem</creator><creator>Yamini, Shavait</creator><creator>Singh, Rashmi P.</creator><creator>Singh, Amit K.</creator><creator>Sharma, Pradeep</creator><creator>Smith, Michael L.</creator><creator>Sharma, Sujata</creator><creator>Singh, Tej P.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9873-7323</orcidid><orcidid>https://orcid.org/0000-0001-6627-0669</orcidid><orcidid>https://orcid.org/0000-0002-2886-7963</orcidid></search><sort><creationdate>202202</creationdate><title>Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase</title><author>Singh, Prashant K. ; Ahmad, Nayeem ; Yamini, Shavait ; Singh, Rashmi P. ; Singh, Amit K. ; Sharma, Pradeep ; Smith, Michael L. ; Sharma, Sujata ; Singh, Tej P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-4190522e187da8b00597bae1a7a401fb16fce36cbfb82959f2e2f2069f9cb2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonium</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Catalysis</topic><topic>Colorimetry</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Data collection</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Gastric juice</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>inhibition mechanism</topic><topic>innate immunity</topic><topic>Iodides</topic><topic>Iodine Compounds</topic><topic>Ions</topic><topic>lactoperoxidase</topic><topic>Lactoperoxidase - chemistry</topic><topic>Lactoperoxidase - metabolism</topic><topic>Mammals</topic><topic>Mucosa</topic><topic>mucosal immunology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxidase</topic><topic>Saliva</topic><topic>Structural analysis</topic><topic>Substrate inhibition</topic><topic>Substrates</topic><topic>Sulfonic acid</topic><topic>Thiocyanates</topic><topic>viral immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant K.</creatorcontrib><creatorcontrib>Ahmad, Nayeem</creatorcontrib><creatorcontrib>Yamini, Shavait</creatorcontrib><creatorcontrib>Singh, Rashmi P.</creatorcontrib><creatorcontrib>Singh, Amit K.</creatorcontrib><creatorcontrib>Sharma, Pradeep</creatorcontrib><creatorcontrib>Smith, Michael L.</creatorcontrib><creatorcontrib>Sharma, Sujata</creatorcontrib><creatorcontrib>Singh, Tej P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant K.</au><au>Ahmad, Nayeem</au><au>Yamini, Shavait</au><au>Singh, Rashmi P.</au><au>Singh, Amit K.</au><au>Sharma, Pradeep</au><au>Smith, Michael L.</au><au>Sharma, Sujata</au><au>Singh, Tej P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>384</spage><epage>395</epage><pages>384-395</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2O2) to convert thiocyanate (SCN−) and iodide (I−) ions into the oxidizing compounds hypothiocyanite (OSCN−) and hypoiodite (IO−). Previously determined structures of the complexes of LPO with SCN−, OSCN−, and I− show that SCN− and I− occupy appropriate positions in the distal heme cavity as substrates while OSCN− binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO− as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2O2, then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG‐3350, 20% (wt/vol). These crystals were used for X‐ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2′‐azino‐bis(3‐ethylbenzthiazoline‐sulfonic acid)), in the presence of hypoiodite and iodide ions. PDB Code(s): 7VE3;</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34761444</pmid><doi>10.1002/pro.4230</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9873-7323</orcidid><orcidid>https://orcid.org/0000-0001-6627-0669</orcidid><orcidid>https://orcid.org/0000-0002-2886-7963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2022-02, Vol.31 (2), p.384-395
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8819834
source MEDLINE; Wiley Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ammonium
Animals
Binding sites
Catalysis
Colorimetry
Crystal structure
Crystallization
Crystallography, X-Ray
Crystals
Data collection
Full‐Length Paper
Full‐Length Papers
Gastric juice
Heme
Heme - chemistry
Hydrogen peroxide
Hydrogen Peroxide - chemistry
inhibition mechanism
innate immunity
Iodides
Iodine Compounds
Ions
lactoperoxidase
Lactoperoxidase - chemistry
Lactoperoxidase - metabolism
Mammals
Mucosa
mucosal immunology
Oxidation
Oxidation-Reduction
Peroxidase
Saliva
Structural analysis
Substrate inhibition
Substrates
Sulfonic acid
Thiocyanates
viral immunology
title Structural evidence of the oxidation of iodide ion into hyper‐reactive hypoiodite ion by mammalian heme lactoperoxidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evidence%20of%20the%20oxidation%20of%20iodide%20ion%20into%20hyper%E2%80%90reactive%20hypoiodite%20ion%20by%20mammalian%20heme%20lactoperoxidase&rft.jtitle=Protein%20science&rft.au=Singh,%20Prashant%20K.&rft.date=2022-02&rft.volume=31&rft.issue=2&rft.spage=384&rft.epage=395&rft.pages=384-395&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4230&rft_dat=%3Cproquest_pubme%3E2625991704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625991704&rft_id=info:pmid/34761444&rfr_iscdi=true