Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma
In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death l...
Gespeichert in:
Veröffentlicht in: | Oncogene 2022-02, Vol.41 (6), p.865-877 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 877 |
---|---|
container_issue | 6 |
container_start_page | 865 |
container_title | Oncogene |
container_volume | 41 |
creator | Xia, Qing Jia, Jing Hu, Chupeng Lu, Jinying Li, Jiajin Xu, Haiyan Fang, Jianchen Feng, Dongju Wang, Liwei Chen, Yun |
description | In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the
18
fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of
PD-L1
by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC. |
doi_str_mv | 10.1038/s41388-021-02133-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8816727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625409925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgvjr1BQgVaxEV0UdbW2HFuUyV2sJOKPgZvjENK-VmwsCxrvnM8Mwehp5S8pISrV1lQrlRFGF0P51V9D-2oaGRV11rcRzuia1JpxtkRepTzFSGk0YQ9REdcKMmEJDv0_WIZY6og5-h6mH2LR3ApTpdw8BlPKY5x9vj8bbWn2H-bks-5jwH3Ac-rEDs_DBnbG5z8YRlg7sMBn3_8xHBY3OAh4TlByEN0pbTpJggu-fJ0uF3cDAOG1ocCJNeHOMJj9KCDIfsnt_cx-vL-3cXJWbX_fPrh5M2-cjXjc2WZtUq3vvHEg7Ud5VSJuu46DYKAExqoVa0SVDgAqgVxjWVElkU1suVW8mP0evOdFjv61vlQWh3MlPoR0o2J0Ju_K6G_NId4bZSismFNMXhxa5Di18Xn2Yx9XvcBwcclGyaJ1JxoSQv6_B_0Ki4plPEKxWpBtGZ1odhGlQByTr67a4YSsyZutsRNGcL8TNysomd_jnEn-RVxAfgG5FIKB59-__0f2x-1Kbpq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625409925</pqid></control><display><type>article</type><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</creator><creatorcontrib>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</creatorcontrib><description>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the
18
fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of
PD-L1
by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-02133-5</identifier><identifier>PMID: 34862460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/21 ; 13/31 ; 13/51 ; 14/63 ; 38/90 ; 38/91 ; 631/250/580 ; 631/67/580 ; 64/60 ; 96/1 ; 96/2 ; Adenocarcinoma ; Animals ; Apoptosis ; B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Cancer ; Carcinoma, Pancreatic Ductal - genetics ; Carcinoma, Pancreatic Ductal - immunology ; Carcinoma, Pancreatic Ductal - metabolism ; Carcinoma, Pancreatic Ductal - pathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell activation ; Cell Biology ; Cell death ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Chromatin ; Computed tomography ; Deoxyglucose ; Female ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Human Genetics ; Humans ; Immunoprecipitation ; Immunosuppression ; Immunotherapy ; Internal Medicine ; Macrophages ; Male ; Medicine ; Medicine & Public Health ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Natural killer cells ; Nuclear transport ; Oncology ; Pancreas ; Pancreatic cancer ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; PD-1 protein ; PD-L1 protein ; Positron emission tomography ; Pyruvate kinase ; Pyruvic acid ; Stat1 protein ; STAT1 Transcription Factor ; Thyroid Hormone-Binding Proteins ; Thyroid Hormones - genetics ; Thyroid Hormones - metabolism ; Tomography ; Transcription ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b1 ; Tumor cells ; Tumor-Associated Macrophages - immunology ; Tumor-Associated Macrophages - metabolism</subject><ispartof>Oncogene, 2022-02, Vol.41 (6), p.865-877</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</citedby><cites>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</cites><orcidid>0000-0002-8304-3115 ; 0000-0002-4118-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-021-02133-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-021-02133-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34862460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Qing</creatorcontrib><creatorcontrib>Jia, Jing</creatorcontrib><creatorcontrib>Hu, Chupeng</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Xu, Haiyan</creatorcontrib><creatorcontrib>Fang, Jianchen</creatorcontrib><creatorcontrib>Feng, Dongju</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the
18
fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of
PD-L1
by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</description><subject>13/109</subject><subject>13/21</subject><subject>13/31</subject><subject>13/51</subject><subject>14/63</subject><subject>38/90</subject><subject>38/91</subject><subject>631/250/580</subject><subject>631/67/580</subject><subject>64/60</subject><subject>96/1</subject><subject>96/2</subject><subject>Adenocarcinoma</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Cancer</subject><subject>Carcinoma, Pancreatic Ductal - genetics</subject><subject>Carcinoma, Pancreatic Ductal - immunology</subject><subject>Carcinoma, Pancreatic Ductal - metabolism</subject><subject>Carcinoma, Pancreatic Ductal - pathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin</subject><subject>Computed tomography</subject><subject>Deoxyglucose</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glycolysis</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Internal Medicine</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Natural killer cells</subject><subject>Nuclear transport</subject><subject>Oncology</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Positron emission tomography</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor</subject><subject>Thyroid Hormone-Binding Proteins</subject><subject>Thyroid Hormones - genetics</subject><subject>Thyroid Hormones - metabolism</subject><subject>Tomography</subject><subject>Transcription</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Tumor cells</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Tumor-Associated Macrophages - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgvjr1BQgVaxEV0UdbW2HFuUyV2sJOKPgZvjENK-VmwsCxrvnM8Mwehp5S8pISrV1lQrlRFGF0P51V9D-2oaGRV11rcRzuia1JpxtkRepTzFSGk0YQ9REdcKMmEJDv0_WIZY6og5-h6mH2LR3ApTpdw8BlPKY5x9vj8bbWn2H-bks-5jwH3Ac-rEDs_DBnbG5z8YRlg7sMBn3_8xHBY3OAh4TlByEN0pbTpJggu-fJ0uF3cDAOG1ocCJNeHOMJj9KCDIfsnt_cx-vL-3cXJWbX_fPrh5M2-cjXjc2WZtUq3vvHEg7Ud5VSJuu46DYKAExqoVa0SVDgAqgVxjWVElkU1suVW8mP0evOdFjv61vlQWh3MlPoR0o2J0Ju_K6G_NId4bZSismFNMXhxa5Di18Xn2Yx9XvcBwcclGyaJ1JxoSQv6_B_0Ki4plPEKxWpBtGZ1odhGlQByTr67a4YSsyZutsRNGcL8TNysomd_jnEn-RVxAfgG5FIKB59-__0f2x-1Kbpq</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Xia, Qing</creator><creator>Jia, Jing</creator><creator>Hu, Chupeng</creator><creator>Lu, Jinying</creator><creator>Li, Jiajin</creator><creator>Xu, Haiyan</creator><creator>Fang, Jianchen</creator><creator>Feng, Dongju</creator><creator>Wang, Liwei</creator><creator>Chen, Yun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8304-3115</orcidid><orcidid>https://orcid.org/0000-0002-4118-362X</orcidid></search><sort><creationdate>20220204</creationdate><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><author>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/109</topic><topic>13/21</topic><topic>13/31</topic><topic>13/51</topic><topic>14/63</topic><topic>38/90</topic><topic>38/91</topic><topic>631/250/580</topic><topic>631/67/580</topic><topic>64/60</topic><topic>96/1</topic><topic>96/2</topic><topic>Adenocarcinoma</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Cancer</topic><topic>Carcinoma, Pancreatic Ductal - genetics</topic><topic>Carcinoma, Pancreatic Ductal - immunology</topic><topic>Carcinoma, Pancreatic Ductal - metabolism</topic><topic>Carcinoma, Pancreatic Ductal - pathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin</topic><topic>Computed tomography</topic><topic>Deoxyglucose</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glycolysis</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Internal Medicine</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Natural killer cells</topic><topic>Nuclear transport</topic><topic>Oncology</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Positron emission tomography</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor</topic><topic>Thyroid Hormone-Binding Proteins</topic><topic>Thyroid Hormones - genetics</topic><topic>Thyroid Hormones - metabolism</topic><topic>Tomography</topic><topic>Transcription</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Tumor cells</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Tumor-Associated Macrophages - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Qing</creatorcontrib><creatorcontrib>Jia, Jing</creatorcontrib><creatorcontrib>Hu, Chupeng</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Xu, Haiyan</creatorcontrib><creatorcontrib>Fang, Jianchen</creatorcontrib><creatorcontrib>Feng, Dongju</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Qing</au><au>Jia, Jing</au><au>Hu, Chupeng</au><au>Lu, Jinying</au><au>Li, Jiajin</au><au>Xu, Haiyan</au><au>Fang, Jianchen</au><au>Feng, Dongju</au><au>Wang, Liwei</au><au>Chen, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>865</spage><epage>877</epage><pages>865-877</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the
18
fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of
PD-L1
by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34862460</pmid><doi>10.1038/s41388-021-02133-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8304-3115</orcidid><orcidid>https://orcid.org/0000-0002-4118-362X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2022-02, Vol.41 (6), p.865-877 |
issn | 0950-9232 1476-5594 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8816727 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 13/109 13/21 13/31 13/51 14/63 38/90 38/91 631/250/580 631/67/580 64/60 96/1 96/2 Adenocarcinoma Animals Apoptosis B7-H1 Antigen - genetics B7-H1 Antigen - metabolism Cancer Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - immunology Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology Carrier Proteins - genetics Carrier Proteins - metabolism Cell activation Cell Biology Cell death Cell Line, Tumor Cell Nucleus - metabolism Chromatin Computed tomography Deoxyglucose Female Gene Expression Regulation, Neoplastic Glycolysis Human Genetics Humans Immunoprecipitation Immunosuppression Immunotherapy Internal Medicine Macrophages Male Medicine Medicine & Public Health Membrane Proteins - genetics Membrane Proteins - metabolism Mice Natural killer cells Nuclear transport Oncology Pancreas Pancreatic cancer Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology PD-1 protein PD-L1 protein Positron emission tomography Pyruvate kinase Pyruvic acid Stat1 protein STAT1 Transcription Factor Thyroid Hormone-Binding Proteins Thyroid Hormones - genetics Thyroid Hormones - metabolism Tomography Transcription Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - metabolism Transforming growth factor-b1 Tumor cells Tumor-Associated Macrophages - immunology Tumor-Associated Macrophages - metabolism |
title | Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-associated%20macrophages%20promote%20PD-L1%20expression%20in%20tumor%20cells%20by%20regulating%20PKM2%20nuclear%20translocation%20in%20pancreatic%20ductal%20adenocarcinoma&rft.jtitle=Oncogene&rft.au=Xia,%20Qing&rft.date=2022-02-04&rft.volume=41&rft.issue=6&rft.spage=865&rft.epage=877&rft.pages=865-877&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-02133-5&rft_dat=%3Cproquest_pubme%3E2625409925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625409925&rft_id=info:pmid/34862460&rfr_iscdi=true |