Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma

In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2022-02, Vol.41 (6), p.865-877
Hauptverfasser: Xia, Qing, Jia, Jing, Hu, Chupeng, Lu, Jinying, Li, Jiajin, Xu, Haiyan, Fang, Jianchen, Feng, Dongju, Wang, Liwei, Chen, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 6
container_start_page 865
container_title Oncogene
container_volume 41
creator Xia, Qing
Jia, Jing
Hu, Chupeng
Lu, Jinying
Li, Jiajin
Xu, Haiyan
Fang, Jianchen
Feng, Dongju
Wang, Liwei
Chen, Yun
description In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.
doi_str_mv 10.1038/s41388-021-02133-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8816727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625409925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgvjr1BQgVaxEV0UdbW2HFuUyV2sJOKPgZvjENK-VmwsCxrvnM8Mwehp5S8pISrV1lQrlRFGF0P51V9D-2oaGRV11rcRzuia1JpxtkRepTzFSGk0YQ9REdcKMmEJDv0_WIZY6og5-h6mH2LR3ApTpdw8BlPKY5x9vj8bbWn2H-bks-5jwH3Ac-rEDs_DBnbG5z8YRlg7sMBn3_8xHBY3OAh4TlByEN0pbTpJggu-fJ0uF3cDAOG1ocCJNeHOMJj9KCDIfsnt_cx-vL-3cXJWbX_fPrh5M2-cjXjc2WZtUq3vvHEg7Ud5VSJuu46DYKAExqoVa0SVDgAqgVxjWVElkU1suVW8mP0evOdFjv61vlQWh3MlPoR0o2J0Ju_K6G_NId4bZSismFNMXhxa5Di18Xn2Yx9XvcBwcclGyaJ1JxoSQv6_B_0Ki4plPEKxWpBtGZ1odhGlQByTr67a4YSsyZutsRNGcL8TNysomd_jnEn-RVxAfgG5FIKB59-__0f2x-1Kbpq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625409925</pqid></control><display><type>article</type><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</creator><creatorcontrib>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</creatorcontrib><description>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-02133-5</identifier><identifier>PMID: 34862460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/21 ; 13/31 ; 13/51 ; 14/63 ; 38/90 ; 38/91 ; 631/250/580 ; 631/67/580 ; 64/60 ; 96/1 ; 96/2 ; Adenocarcinoma ; Animals ; Apoptosis ; B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Cancer ; Carcinoma, Pancreatic Ductal - genetics ; Carcinoma, Pancreatic Ductal - immunology ; Carcinoma, Pancreatic Ductal - metabolism ; Carcinoma, Pancreatic Ductal - pathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell activation ; Cell Biology ; Cell death ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Chromatin ; Computed tomography ; Deoxyglucose ; Female ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Human Genetics ; Humans ; Immunoprecipitation ; Immunosuppression ; Immunotherapy ; Internal Medicine ; Macrophages ; Male ; Medicine ; Medicine &amp; Public Health ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Natural killer cells ; Nuclear transport ; Oncology ; Pancreas ; Pancreatic cancer ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; PD-1 protein ; PD-L1 protein ; Positron emission tomography ; Pyruvate kinase ; Pyruvic acid ; Stat1 protein ; STAT1 Transcription Factor ; Thyroid Hormone-Binding Proteins ; Thyroid Hormones - genetics ; Thyroid Hormones - metabolism ; Tomography ; Transcription ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b1 ; Tumor cells ; Tumor-Associated Macrophages - immunology ; Tumor-Associated Macrophages - metabolism</subject><ispartof>Oncogene, 2022-02, Vol.41 (6), p.865-877</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</citedby><cites>FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</cites><orcidid>0000-0002-8304-3115 ; 0000-0002-4118-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-021-02133-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-021-02133-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34862460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Qing</creatorcontrib><creatorcontrib>Jia, Jing</creatorcontrib><creatorcontrib>Hu, Chupeng</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Xu, Haiyan</creatorcontrib><creatorcontrib>Fang, Jianchen</creatorcontrib><creatorcontrib>Feng, Dongju</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</description><subject>13/109</subject><subject>13/21</subject><subject>13/31</subject><subject>13/51</subject><subject>14/63</subject><subject>38/90</subject><subject>38/91</subject><subject>631/250/580</subject><subject>631/67/580</subject><subject>64/60</subject><subject>96/1</subject><subject>96/2</subject><subject>Adenocarcinoma</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Cancer</subject><subject>Carcinoma, Pancreatic Ductal - genetics</subject><subject>Carcinoma, Pancreatic Ductal - immunology</subject><subject>Carcinoma, Pancreatic Ductal - metabolism</subject><subject>Carcinoma, Pancreatic Ductal - pathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin</subject><subject>Computed tomography</subject><subject>Deoxyglucose</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glycolysis</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Internal Medicine</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Natural killer cells</subject><subject>Nuclear transport</subject><subject>Oncology</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Positron emission tomography</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Stat1 protein</subject><subject>STAT1 Transcription Factor</subject><subject>Thyroid Hormone-Binding Proteins</subject><subject>Thyroid Hormones - genetics</subject><subject>Thyroid Hormones - metabolism</subject><subject>Tomography</subject><subject>Transcription</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Tumor cells</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Tumor-Associated Macrophages - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgvjr1BQgVaxEV0UdbW2HFuUyV2sJOKPgZvjENK-VmwsCxrvnM8Mwehp5S8pISrV1lQrlRFGF0P51V9D-2oaGRV11rcRzuia1JpxtkRepTzFSGk0YQ9REdcKMmEJDv0_WIZY6og5-h6mH2LR3ApTpdw8BlPKY5x9vj8bbWn2H-bks-5jwH3Ac-rEDs_DBnbG5z8YRlg7sMBn3_8xHBY3OAh4TlByEN0pbTpJggu-fJ0uF3cDAOG1ocCJNeHOMJj9KCDIfsnt_cx-vL-3cXJWbX_fPrh5M2-cjXjc2WZtUq3vvHEg7Ud5VSJuu46DYKAExqoVa0SVDgAqgVxjWVElkU1suVW8mP0evOdFjv61vlQWh3MlPoR0o2J0Ju_K6G_NId4bZSismFNMXhxa5Di18Xn2Yx9XvcBwcclGyaJ1JxoSQv6_B_0Ki4plPEKxWpBtGZ1odhGlQByTr67a4YSsyZutsRNGcL8TNysomd_jnEn-RVxAfgG5FIKB59-__0f2x-1Kbpq</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Xia, Qing</creator><creator>Jia, Jing</creator><creator>Hu, Chupeng</creator><creator>Lu, Jinying</creator><creator>Li, Jiajin</creator><creator>Xu, Haiyan</creator><creator>Fang, Jianchen</creator><creator>Feng, Dongju</creator><creator>Wang, Liwei</creator><creator>Chen, Yun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8304-3115</orcidid><orcidid>https://orcid.org/0000-0002-4118-362X</orcidid></search><sort><creationdate>20220204</creationdate><title>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</title><author>Xia, Qing ; Jia, Jing ; Hu, Chupeng ; Lu, Jinying ; Li, Jiajin ; Xu, Haiyan ; Fang, Jianchen ; Feng, Dongju ; Wang, Liwei ; Chen, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-b2bb89de7e0eabbf1318455ff9a40ac49a1b8d8414caa1940c7b20602176d3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/109</topic><topic>13/21</topic><topic>13/31</topic><topic>13/51</topic><topic>14/63</topic><topic>38/90</topic><topic>38/91</topic><topic>631/250/580</topic><topic>631/67/580</topic><topic>64/60</topic><topic>96/1</topic><topic>96/2</topic><topic>Adenocarcinoma</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Cancer</topic><topic>Carcinoma, Pancreatic Ductal - genetics</topic><topic>Carcinoma, Pancreatic Ductal - immunology</topic><topic>Carcinoma, Pancreatic Ductal - metabolism</topic><topic>Carcinoma, Pancreatic Ductal - pathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin</topic><topic>Computed tomography</topic><topic>Deoxyglucose</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glycolysis</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Internal Medicine</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Natural killer cells</topic><topic>Nuclear transport</topic><topic>Oncology</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Positron emission tomography</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Stat1 protein</topic><topic>STAT1 Transcription Factor</topic><topic>Thyroid Hormone-Binding Proteins</topic><topic>Thyroid Hormones - genetics</topic><topic>Thyroid Hormones - metabolism</topic><topic>Tomography</topic><topic>Transcription</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Tumor cells</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Tumor-Associated Macrophages - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Qing</creatorcontrib><creatorcontrib>Jia, Jing</creatorcontrib><creatorcontrib>Hu, Chupeng</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Li, Jiajin</creatorcontrib><creatorcontrib>Xu, Haiyan</creatorcontrib><creatorcontrib>Fang, Jianchen</creatorcontrib><creatorcontrib>Feng, Dongju</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Qing</au><au>Jia, Jing</au><au>Hu, Chupeng</au><au>Lu, Jinying</au><au>Li, Jiajin</au><au>Xu, Haiyan</au><au>Fang, Jianchen</au><au>Feng, Dongju</au><au>Wang, Liwei</au><au>Chen, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>865</spage><epage>877</epage><pages>865-877</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-β1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-β1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34862460</pmid><doi>10.1038/s41388-021-02133-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8304-3115</orcidid><orcidid>https://orcid.org/0000-0002-4118-362X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2022-02, Vol.41 (6), p.865-877
issn 0950-9232
1476-5594
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8816727
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 13/109
13/21
13/31
13/51
14/63
38/90
38/91
631/250/580
631/67/580
64/60
96/1
96/2
Adenocarcinoma
Animals
Apoptosis
B7-H1 Antigen - genetics
B7-H1 Antigen - metabolism
Cancer
Carcinoma, Pancreatic Ductal - genetics
Carcinoma, Pancreatic Ductal - immunology
Carcinoma, Pancreatic Ductal - metabolism
Carcinoma, Pancreatic Ductal - pathology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell activation
Cell Biology
Cell death
Cell Line, Tumor
Cell Nucleus - metabolism
Chromatin
Computed tomography
Deoxyglucose
Female
Gene Expression Regulation, Neoplastic
Glycolysis
Human Genetics
Humans
Immunoprecipitation
Immunosuppression
Immunotherapy
Internal Medicine
Macrophages
Male
Medicine
Medicine & Public Health
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Natural killer cells
Nuclear transport
Oncology
Pancreas
Pancreatic cancer
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
PD-1 protein
PD-L1 protein
Positron emission tomography
Pyruvate kinase
Pyruvic acid
Stat1 protein
STAT1 Transcription Factor
Thyroid Hormone-Binding Proteins
Thyroid Hormones - genetics
Thyroid Hormones - metabolism
Tomography
Transcription
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - metabolism
Transforming growth factor-b1
Tumor cells
Tumor-Associated Macrophages - immunology
Tumor-Associated Macrophages - metabolism
title Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-associated%20macrophages%20promote%20PD-L1%20expression%20in%20tumor%20cells%20by%20regulating%20PKM2%20nuclear%20translocation%20in%20pancreatic%20ductal%20adenocarcinoma&rft.jtitle=Oncogene&rft.au=Xia,%20Qing&rft.date=2022-02-04&rft.volume=41&rft.issue=6&rft.spage=865&rft.epage=877&rft.pages=865-877&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-02133-5&rft_dat=%3Cproquest_pubme%3E2625409925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625409925&rft_id=info:pmid/34862460&rfr_iscdi=true