Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism

Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2022, Vol.186 (3), p.35-35, Article 35
Hauptverfasser: Lopes, Artur O., Lopes, Silvia R. C., Varandas, Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 3
container_start_page 35
container_title Journal of statistical physics
container_volume 186
creator Lopes, Artur O.
Lopes, Silvia R. C.
Varandas, Paulo
description Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [ 7 , 37 ]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [ 47 ] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [ 39 , 40 , 57 ] instead of joinings.
doi_str_mv 10.1007/s10955-022-02885-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691808347</galeid><sourcerecordid>A691808347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EomnhD3BAK3HhssUf67V9QUojUpAiwaFcuFiOdzZ1tWsXexMp_54JW8rHAVmWZc_zjmfmJeQVo5eMUvWuMGqkrCnnuLWWtX5CFkwqXpuWiadkQU-hRjF5Rs5LuaOUGm3kc3ImJBOcK7Mg367cEUr1JZUJcki5WqV4gLyD6KHq8b5JpVTrffRTSLFUh-Cq5TAiXi27LkzhANXNLeQxdcfoxuCrdcqjG0IZX5BnvRsKvHw4L8jX9Yeb1cd68_n602q5qT1WMdXONL1UnnrGhRJ-S4ELybdeNR463zollWhE10Pv2q2jTcula40B6hvnddeIC_J-znu_344ogThlN9j7HEaXjza5YP-OxHBrd-lgtWZMSYoJ3j4kyOn7Hspkx1A8DIOLkPbF8pa32nAuGKJv_kHv0j5HbO9ESW6kERKpy5nauQFsiH3Cfz2uDnBCKUIf8H3ZGqapFo1CAZ8FPuO4M_SP1TNqT17b2WuLhtqfXluNotd_9v0o-WUuAmIGCobiDvLvYv-T9gfxgLXm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625295935</pqid></control><display><type>article</type><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><source>SpringerLink Journals</source><creator>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</creator><creatorcontrib>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</creatorcontrib><description>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [ 7 , 37 ]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [ 47 ] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [ 39 , 40 , 57 ] instead of joinings.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-02885-8</identifier><identifier>PMID: 35132279</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Convergence ; Data processing ; Formalism ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical inference ; Statistical Physics and Dynamical Systems ; Theoretical ; Thermodynamics</subject><ispartof>Journal of statistical physics, 2022, Vol.186 (3), p.35-35, Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</citedby><cites>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</cites><orcidid>0000-0002-0902-8718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-02885-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-02885-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35132279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Artur O.</creatorcontrib><creatorcontrib>Lopes, Silvia R. C.</creatorcontrib><creatorcontrib>Varandas, Paulo</creatorcontrib><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><addtitle>J Stat Phys</addtitle><description>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [ 7 , 37 ]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [ 47 ] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [ 39 , 40 , 57 ] instead of joinings.</description><subject>Bayesian analysis</subject><subject>Convergence</subject><subject>Data processing</subject><subject>Formalism</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical inference</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EomnhD3BAK3HhssUf67V9QUojUpAiwaFcuFiOdzZ1tWsXexMp_54JW8rHAVmWZc_zjmfmJeQVo5eMUvWuMGqkrCnnuLWWtX5CFkwqXpuWiadkQU-hRjF5Rs5LuaOUGm3kc3ImJBOcK7Mg367cEUr1JZUJcki5WqV4gLyD6KHq8b5JpVTrffRTSLFUh-Cq5TAiXi27LkzhANXNLeQxdcfoxuCrdcqjG0IZX5BnvRsKvHw4L8jX9Yeb1cd68_n602q5qT1WMdXONL1UnnrGhRJ-S4ELybdeNR463zollWhE10Pv2q2jTcula40B6hvnddeIC_J-znu_344ogThlN9j7HEaXjza5YP-OxHBrd-lgtWZMSYoJ3j4kyOn7Hspkx1A8DIOLkPbF8pa32nAuGKJv_kHv0j5HbO9ESW6kERKpy5nauQFsiH3Cfz2uDnBCKUIf8H3ZGqapFo1CAZ8FPuO4M_SP1TNqT17b2WuLhtqfXluNotd_9v0o-WUuAmIGCobiDvLvYv-T9gfxgLXm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lopes, Artur O.</creator><creator>Lopes, Silvia R. C.</creator><creator>Varandas, Paulo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0902-8718</orcidid></search><sort><creationdate>2022</creationdate><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><author>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Convergence</topic><topic>Data processing</topic><topic>Formalism</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical inference</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Artur O.</creatorcontrib><creatorcontrib>Lopes, Silvia R. C.</creatorcontrib><creatorcontrib>Varandas, Paulo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Artur O.</au><au>Lopes, Silvia R. C.</au><au>Varandas, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><addtitle>J Stat Phys</addtitle><date>2022</date><risdate>2022</risdate><volume>186</volume><issue>3</issue><spage>35</spage><epage>35</epage><pages>35-35</pages><artnum>35</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [ 7 , 37 ]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [ 47 ] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [ 39 , 40 , 57 ] instead of joinings.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35132279</pmid><doi>10.1007/s10955-022-02885-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0902-8718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2022, Vol.186 (3), p.35-35, Article 35
issn 0022-4715
1572-9613
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811750
source SpringerLink Journals
subjects Bayesian analysis
Convergence
Data processing
Formalism
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical inference
Statistical Physics and Dynamical Systems
Theoretical
Thermodynamics
title Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes%20Posterior%20Convergence%20for%20Loss%20Functions%20via%20Almost%20Additive%20Thermodynamic%20Formalism&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Lopes,%20Artur%20O.&rft.date=2022&rft.volume=186&rft.issue=3&rft.spage=35&rft.epage=35&rft.pages=35-35&rft.artnum=35&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-02885-8&rft_dat=%3Cgale_pubme%3EA691808347%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625295935&rft_id=info:pmid/35132279&rft_galeid=A691808347&rfr_iscdi=true