Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism
Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure i...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2022, Vol.186 (3), p.35-35, Article 35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 3 |
container_start_page | 35 |
container_title | Journal of statistical physics |
container_volume | 186 |
creator | Lopes, Artur O. Lopes, Silvia R. C. Varandas, Paulo |
description | Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [
7
,
37
]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [
47
] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [
39
,
40
,
57
] instead of joinings. |
doi_str_mv | 10.1007/s10955-022-02885-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691808347</galeid><sourcerecordid>A691808347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EomnhD3BAK3HhssUf67V9QUojUpAiwaFcuFiOdzZ1tWsXexMp_54JW8rHAVmWZc_zjmfmJeQVo5eMUvWuMGqkrCnnuLWWtX5CFkwqXpuWiadkQU-hRjF5Rs5LuaOUGm3kc3ImJBOcK7Mg367cEUr1JZUJcki5WqV4gLyD6KHq8b5JpVTrffRTSLFUh-Cq5TAiXi27LkzhANXNLeQxdcfoxuCrdcqjG0IZX5BnvRsKvHw4L8jX9Yeb1cd68_n602q5qT1WMdXONL1UnnrGhRJ-S4ELybdeNR463zollWhE10Pv2q2jTcula40B6hvnddeIC_J-znu_344ogThlN9j7HEaXjza5YP-OxHBrd-lgtWZMSYoJ3j4kyOn7Hspkx1A8DIOLkPbF8pa32nAuGKJv_kHv0j5HbO9ESW6kERKpy5nauQFsiH3Cfz2uDnBCKUIf8H3ZGqapFo1CAZ8FPuO4M_SP1TNqT17b2WuLhtqfXluNotd_9v0o-WUuAmIGCobiDvLvYv-T9gfxgLXm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625295935</pqid></control><display><type>article</type><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><source>SpringerLink Journals</source><creator>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</creator><creatorcontrib>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</creatorcontrib><description>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [
7
,
37
]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [
47
] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [
39
,
40
,
57
] instead of joinings.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-02885-8</identifier><identifier>PMID: 35132279</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Convergence ; Data processing ; Formalism ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical inference ; Statistical Physics and Dynamical Systems ; Theoretical ; Thermodynamics</subject><ispartof>Journal of statistical physics, 2022, Vol.186 (3), p.35-35, Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</citedby><cites>FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</cites><orcidid>0000-0002-0902-8718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-02885-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-02885-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35132279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Artur O.</creatorcontrib><creatorcontrib>Lopes, Silvia R. C.</creatorcontrib><creatorcontrib>Varandas, Paulo</creatorcontrib><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><addtitle>J Stat Phys</addtitle><description>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [
7
,
37
]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [
47
] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [
39
,
40
,
57
] instead of joinings.</description><subject>Bayesian analysis</subject><subject>Convergence</subject><subject>Data processing</subject><subject>Formalism</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical inference</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EomnhD3BAK3HhssUf67V9QUojUpAiwaFcuFiOdzZ1tWsXexMp_54JW8rHAVmWZc_zjmfmJeQVo5eMUvWuMGqkrCnnuLWWtX5CFkwqXpuWiadkQU-hRjF5Rs5LuaOUGm3kc3ImJBOcK7Mg367cEUr1JZUJcki5WqV4gLyD6KHq8b5JpVTrffRTSLFUh-Cq5TAiXi27LkzhANXNLeQxdcfoxuCrdcqjG0IZX5BnvRsKvHw4L8jX9Yeb1cd68_n602q5qT1WMdXONL1UnnrGhRJ-S4ELybdeNR463zollWhE10Pv2q2jTcula40B6hvnddeIC_J-znu_344ogThlN9j7HEaXjza5YP-OxHBrd-lgtWZMSYoJ3j4kyOn7Hspkx1A8DIOLkPbF8pa32nAuGKJv_kHv0j5HbO9ESW6kERKpy5nauQFsiH3Cfz2uDnBCKUIf8H3ZGqapFo1CAZ8FPuO4M_SP1TNqT17b2WuLhtqfXluNotd_9v0o-WUuAmIGCobiDvLvYv-T9gfxgLXm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lopes, Artur O.</creator><creator>Lopes, Silvia R. C.</creator><creator>Varandas, Paulo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0902-8718</orcidid></search><sort><creationdate>2022</creationdate><title>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</title><author>Lopes, Artur O. ; Lopes, Silvia R. C. ; Varandas, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a94f57c0c12373cb0e2352bc74cedc6a757343dfefa6ba04625a699e0c4ac8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Convergence</topic><topic>Data processing</topic><topic>Formalism</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical inference</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Artur O.</creatorcontrib><creatorcontrib>Lopes, Silvia R. C.</creatorcontrib><creatorcontrib>Varandas, Paulo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Artur O.</au><au>Lopes, Silvia R. C.</au><au>Varandas, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><addtitle>J Stat Phys</addtitle><date>2022</date><risdate>2022</risdate><volume>186</volume><issue>3</issue><spage>35</spage><epage>35</epage><pages>35-35</pages><artnum>35</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference (see [
7
,
37
]) where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures to a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in [
47
] to a context where loss functions are almost-additive. Our approach makes use of non-additive thermodynamic formalism and large deviation properties [
39
,
40
,
57
] instead of joinings.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35132279</pmid><doi>10.1007/s10955-022-02885-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0902-8718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2022, Vol.186 (3), p.35-35, Article 35 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811750 |
source | SpringerLink Journals |
subjects | Bayesian analysis Convergence Data processing Formalism Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical inference Statistical Physics and Dynamical Systems Theoretical Thermodynamics |
title | Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes%20Posterior%20Convergence%20for%20Loss%20Functions%20via%20Almost%20Additive%20Thermodynamic%20Formalism&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Lopes,%20Artur%20O.&rft.date=2022&rft.volume=186&rft.issue=3&rft.spage=35&rft.epage=35&rft.pages=35-35&rft.artnum=35&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-02885-8&rft_dat=%3Cgale_pubme%3EA691808347%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625295935&rft_id=info:pmid/35132279&rft_galeid=A691808347&rfr_iscdi=true |