Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2022-02, Vol.23 (2), p.e53902-n/a
Hauptverfasser: Manjón, Anna G, Linder, Simon, Teunissen, Hans, Friskes, Anoek, Zwart, Wilbert, de Wit, Elzo, Medema, René H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e53902
container_title EMBO reports
container_volume 23
creator Manjón, Anna G
Linder, Simon
Teunissen, Hans
Friskes, Anoek
Zwart, Wilbert
de Wit, Elzo
Medema, René H
description The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing. Synopsis Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene. A Double‐strand break (DSB) in the promoter of the ABCB1 gene induced by the CRISPR‐Cas9 lentiviral‐based system leads to gene activation and Taxol resistance. Upon DSB induction, proviral vector integration occurs at the targeted break site. The constitutively active promoters of the vector (U6 and EF1A) drive gene activation. This on‐target CRISPR‐Cas9 effect also occurs in other genomic locations. Graphical Abstract Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene.
doi_str_mv 10.15252/embr.202153902
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612032877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5132-8b6f0744ffede5e0ac9c6316fbca9ac7aca4bbc02a1e2b144d4a82c2c4088b83</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EIqXlzA2txKWXNPasd9fmgESjtkQKAoUicbO8zmxwtWsHe9PSW39CfyO_BKdJQ0GqOI2t-d7TGz1CXjF6xAooYIRdHY6AAitySeEJ2WO8lMOcVeLp9g3Avg3IixgvKKWFrMRzMsi5hKqSbI9Mvzr8uUTT4zxboMNMm95e6t56lzW-bf2VdYtsPJt8-Tz7dXM71lGm0eHc6q3Ed5ilb5-4A_Ks0W3El9u5T85PT87HH4bTT2eT8fvp0BQsh6Goy4ZWnDcNzrFAqo00Zc7KpjZaalNpo3ldGwqaIdSM8znXAgwYToWoRb5P3m1sl6s6JTHo-qBbtQy20-FaeW3V3xtnv6uFv1RCMFZymQwOtwbB_1hh7FVno8G21Q79KiooGdAcRFUl9M0_6IVfBZeuSxRwUQDla2q0oUzwMQZsdmEYVXdFqXVRaldUUrx-eMOOv28mAW83wJVt8fp_furk4_HsoTvdiGPSuQWGP6kfC_QbH-qzGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624852047</pqid></control><display><type>article</type><title>Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Manjón, Anna G ; Linder, Simon ; Teunissen, Hans ; Friskes, Anoek ; Zwart, Wilbert ; de Wit, Elzo ; Medema, René H</creator><creatorcontrib>Manjón, Anna G ; Linder, Simon ; Teunissen, Hans ; Friskes, Anoek ; Zwart, Wilbert ; de Wit, Elzo ; Medema, René H</creatorcontrib><description>The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing. Synopsis Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene. A Double‐strand break (DSB) in the promoter of the ABCB1 gene induced by the CRISPR‐Cas9 lentiviral‐based system leads to gene activation and Taxol resistance. Upon DSB induction, proviral vector integration occurs at the targeted break site. The constitutively active promoters of the vector (U6 and EF1A) drive gene activation. This on‐target CRISPR‐Cas9 effect also occurs in other genomic locations. Graphical Abstract Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene.</description><identifier>ISSN: 1469-221X</identifier><identifier>ISSN: 1469-3178</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202153902</identifier><identifier>PMID: 34927791</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Colonies ; CRISPR ; CRISPR-Cas Systems ; CRISPR‐Cas9 ; Damage ; Deoxyribonucleic acid ; DNA ; DNA damage ; drug resistance ; Editing ; EMBO09 ; EMBO22 ; gene activation ; Gene Editing ; Gene expression ; Genome editing ; Genomes ; Genomics ; Integration ; Kinases ; lentiviral integration ; Molecular biology ; on‐target effects ; Paclitaxel ; Promoters ; Taxol ; Transcriptional Activation</subject><ispartof>EMBO reports, 2022-02, Vol.23 (2), p.e53902-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5132-8b6f0744ffede5e0ac9c6316fbca9ac7aca4bbc02a1e2b144d4a82c2c4088b83</citedby><cites>FETCH-LOGICAL-c5132-8b6f0744ffede5e0ac9c6316fbca9ac7aca4bbc02a1e2b144d4a82c2c4088b83</cites><orcidid>0000-0002-6754-0381 ; 0000-0002-9845-3715 ; 0000-0003-2883-1415 ; 0000-0003-3255-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811649/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811649/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34927791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjón, Anna G</creatorcontrib><creatorcontrib>Linder, Simon</creatorcontrib><creatorcontrib>Teunissen, Hans</creatorcontrib><creatorcontrib>Friskes, Anoek</creatorcontrib><creatorcontrib>Zwart, Wilbert</creatorcontrib><creatorcontrib>de Wit, Elzo</creatorcontrib><creatorcontrib>Medema, René H</creatorcontrib><title>Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing. Synopsis Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene. A Double‐strand break (DSB) in the promoter of the ABCB1 gene induced by the CRISPR‐Cas9 lentiviral‐based system leads to gene activation and Taxol resistance. Upon DSB induction, proviral vector integration occurs at the targeted break site. The constitutively active promoters of the vector (U6 and EF1A) drive gene activation. This on‐target CRISPR‐Cas9 effect also occurs in other genomic locations. Graphical Abstract Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene.</description><subject>Colonies</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR‐Cas9</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>drug resistance</subject><subject>Editing</subject><subject>EMBO09</subject><subject>EMBO22</subject><subject>gene activation</subject><subject>Gene Editing</subject><subject>Gene expression</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Integration</subject><subject>Kinases</subject><subject>lentiviral integration</subject><subject>Molecular biology</subject><subject>on‐target effects</subject><subject>Paclitaxel</subject><subject>Promoters</subject><subject>Taxol</subject><subject>Transcriptional Activation</subject><issn>1469-221X</issn><issn>1469-3178</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhS0EIqXlzA2txKWXNPasd9fmgESjtkQKAoUicbO8zmxwtWsHe9PSW39CfyO_BKdJQ0GqOI2t-d7TGz1CXjF6xAooYIRdHY6AAitySeEJ2WO8lMOcVeLp9g3Avg3IixgvKKWFrMRzMsi5hKqSbI9Mvzr8uUTT4zxboMNMm95e6t56lzW-bf2VdYtsPJt8-Tz7dXM71lGm0eHc6q3Ed5ilb5-4A_Ks0W3El9u5T85PT87HH4bTT2eT8fvp0BQsh6Goy4ZWnDcNzrFAqo00Zc7KpjZaalNpo3ldGwqaIdSM8znXAgwYToWoRb5P3m1sl6s6JTHo-qBbtQy20-FaeW3V3xtnv6uFv1RCMFZymQwOtwbB_1hh7FVno8G21Q79KiooGdAcRFUl9M0_6IVfBZeuSxRwUQDla2q0oUzwMQZsdmEYVXdFqXVRaldUUrx-eMOOv28mAW83wJVt8fp_furk4_HsoTvdiGPSuQWGP6kfC_QbH-qzGQ</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Manjón, Anna G</creator><creator>Linder, Simon</creator><creator>Teunissen, Hans</creator><creator>Friskes, Anoek</creator><creator>Zwart, Wilbert</creator><creator>de Wit, Elzo</creator><creator>Medema, René H</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6754-0381</orcidid><orcidid>https://orcid.org/0000-0002-9845-3715</orcidid><orcidid>https://orcid.org/0000-0003-2883-1415</orcidid><orcidid>https://orcid.org/0000-0003-3255-5062</orcidid></search><sort><creationdate>20220203</creationdate><title>Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing</title><author>Manjón, Anna G ; Linder, Simon ; Teunissen, Hans ; Friskes, Anoek ; Zwart, Wilbert ; de Wit, Elzo ; Medema, René H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5132-8b6f0744ffede5e0ac9c6316fbca9ac7aca4bbc02a1e2b144d4a82c2c4088b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Colonies</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR‐Cas9</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>drug resistance</topic><topic>Editing</topic><topic>EMBO09</topic><topic>EMBO22</topic><topic>gene activation</topic><topic>Gene Editing</topic><topic>Gene expression</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Integration</topic><topic>Kinases</topic><topic>lentiviral integration</topic><topic>Molecular biology</topic><topic>on‐target effects</topic><topic>Paclitaxel</topic><topic>Promoters</topic><topic>Taxol</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjón, Anna G</creatorcontrib><creatorcontrib>Linder, Simon</creatorcontrib><creatorcontrib>Teunissen, Hans</creatorcontrib><creatorcontrib>Friskes, Anoek</creatorcontrib><creatorcontrib>Zwart, Wilbert</creatorcontrib><creatorcontrib>de Wit, Elzo</creatorcontrib><creatorcontrib>Medema, René H</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjón, Anna G</au><au>Linder, Simon</au><au>Teunissen, Hans</au><au>Friskes, Anoek</au><au>Zwart, Wilbert</au><au>de Wit, Elzo</au><au>Medema, René H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>e53902</spage><epage>n/a</epage><pages>e53902-n/a</pages><issn>1469-221X</issn><issn>1469-3178</issn><eissn>1469-3178</eissn><abstract>The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing. Synopsis Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene. A Double‐strand break (DSB) in the promoter of the ABCB1 gene induced by the CRISPR‐Cas9 lentiviral‐based system leads to gene activation and Taxol resistance. Upon DSB induction, proviral vector integration occurs at the targeted break site. The constitutively active promoters of the vector (U6 and EF1A) drive gene activation. This on‐target CRISPR‐Cas9 effect also occurs in other genomic locations. Graphical Abstract Lentivirus‐based sgRNA vectors can integrate into the endogenous genomic target location and activate the expression of the target gene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34927791</pmid><doi>10.15252/embr.202153902</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6754-0381</orcidid><orcidid>https://orcid.org/0000-0002-9845-3715</orcidid><orcidid>https://orcid.org/0000-0003-2883-1415</orcidid><orcidid>https://orcid.org/0000-0003-3255-5062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2022-02, Vol.23 (2), p.e53902-n/a
issn 1469-221X
1469-3178
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811649
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects Colonies
CRISPR
CRISPR-Cas Systems
CRISPR‐Cas9
Damage
Deoxyribonucleic acid
DNA
DNA damage
drug resistance
Editing
EMBO09
EMBO22
gene activation
Gene Editing
Gene expression
Genome editing
Genomes
Genomics
Integration
Kinases
lentiviral integration
Molecular biology
on‐target effects
Paclitaxel
Promoters
Taxol
Transcriptional Activation
title Unexpected gene activation following CRISPR‐Cas9‐mediated genome editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20gene%20activation%20following%20CRISPR%E2%80%90Cas9%E2%80%90mediated%20genome%20editing&rft.jtitle=EMBO%20reports&rft.au=Manj%C3%B3n,%20Anna%20G&rft.date=2022-02-03&rft.volume=23&rft.issue=2&rft.spage=e53902&rft.epage=n/a&rft.pages=e53902-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202153902&rft_dat=%3Cproquest_pubme%3E2612032877%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624852047&rft_id=info:pmid/34927791&rfr_iscdi=true