Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress

In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2022-02, Vol.18 (2), p.134-141
Hauptverfasser: Shu, Xin Erica, Mao, Yuanhui, Jia, Longfei, Qian, Shu-Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 2
container_start_page 134
container_title Nature chemical biology
container_volume 18
creator Shu, Xin Erica
Mao, Yuanhui
Jia, Longfei
Qian, Shu-Bing
description In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3–80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3–80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O -linked N -acetylglucosamine ( O -GlcNAc) modification in response to nutrient starvation. Stress-induced de- O -GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming. Nutrient stress induces ATF4 expression via translation reinitiation, which involves eIF3 retainment on the elongating ribosome. This translational reprogramming is mediated by stress-induced removal of the O -GlcNAc modification from eIF3a.
doi_str_mv 10.1038/s41589-021-00913-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608539218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d2078dd5e6d4d0eb8cf7b6591567bb965f3d367862335280cbcdc5651083e7063</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi0EIuHgD1CglWhoFsbf3gYpCkmIFJEGaC2v7QuO9uzD9iLdv8eXPY6PgspjzzuvZ-ZB6CWGtxioelcY5mrogeAeYMC0Z4_QKeac9IyJ4fEx5nCCnpVyD0CFwOopOqFMKcmVPEVfP-yi2QTb-etLarrb_mqyn87sbjI1pNjZFGtOU-lqNrEcHrMPMdSwXNycQ7zr4lxz8LF2pWZfynP0ZG2m4l8czhX6cnnx-fxjf3N7dX1-dtNbJlntHQGpnONeOObAj8qu5Sj4gLmQ4zgIvqaOCqkEoZQTBXa0znLBMSjqJQi6Qu8X3-08bryzrYNsJr3NYWPyTicT9N-ZGL7pu_RDK4VBUtUM3hwMcvo--1L1JhTrp8lEn-aiiQDF6UDwXvr6H-l9mnNs4zUVYdBotA2vEFlUNqdSsl8fm8Gg99j0gk03bPoBm2at6NWfYxxLfnFqAroIyna_bp9___0f258O8aPe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624041500</pqid></control><display><type>article</type><title>Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shu, Xin Erica ; Mao, Yuanhui ; Jia, Longfei ; Qian, Shu-Bing</creator><creatorcontrib>Shu, Xin Erica ; Mao, Yuanhui ; Jia, Longfei ; Qian, Shu-Bing</creatorcontrib><description>In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3–80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3–80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O -linked N -acetylglucosamine ( O -GlcNAc) modification in response to nutrient starvation. Stress-induced de- O -GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming. Nutrient stress induces ATF4 expression via translation reinitiation, which involves eIF3 retainment on the elongating ribosome. This translational reprogramming is mediated by stress-induced removal of the O -GlcNAc modification from eIF3a.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-021-00913-4</identifier><identifier>PMID: 34887587</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/574 ; 631/92/221 ; 631/92/458 ; 631/92/500 ; Activating transcription factor 4 ; Amino acids ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Cell Proliferation ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Codon, Terminator ; Codons ; CRISPR ; Culture Media - chemistry ; DNA, Complementary ; Elongation ; Eukaryotic Initiation Factor-3 - genetics ; Eukaryotic Initiation Factor-3 - metabolism ; Gene Expression Regulation - physiology ; Genome editing ; Genomes ; HEK293 Cells ; HeLa Cells ; Humans ; Initiation factors ; N-Acetylglucosamine ; Nutrient retention ; O-GlcNAcylation ; Open reading frames ; Peptide Chain Initiation, Translational ; Signal transduction ; Stop codon ; Stress, Physiological ; Transfer RNA</subject><ispartof>Nature chemical biology, 2022-02, Vol.18 (2), p.134-141</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d2078dd5e6d4d0eb8cf7b6591567bb965f3d367862335280cbcdc5651083e7063</citedby><cites>FETCH-LOGICAL-c474t-d2078dd5e6d4d0eb8cf7b6591567bb965f3d367862335280cbcdc5651083e7063</cites><orcidid>0000-0002-4127-1136 ; 0000-0002-0893-2588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34887587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Jia, Longfei</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><title>Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3–80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3–80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O -linked N -acetylglucosamine ( O -GlcNAc) modification in response to nutrient starvation. Stress-induced de- O -GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming. Nutrient stress induces ATF4 expression via translation reinitiation, which involves eIF3 retainment on the elongating ribosome. This translational reprogramming is mediated by stress-induced removal of the O -GlcNAc modification from eIF3a.</description><subject>631/337/574</subject><subject>631/92/221</subject><subject>631/92/458</subject><subject>631/92/500</subject><subject>Activating transcription factor 4</subject><subject>Amino acids</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Cell Proliferation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Codon, Terminator</subject><subject>Codons</subject><subject>CRISPR</subject><subject>Culture Media - chemistry</subject><subject>DNA, Complementary</subject><subject>Elongation</subject><subject>Eukaryotic Initiation Factor-3 - genetics</subject><subject>Eukaryotic Initiation Factor-3 - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Initiation factors</subject><subject>N-Acetylglucosamine</subject><subject>Nutrient retention</subject><subject>O-GlcNAcylation</subject><subject>Open reading frames</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Signal transduction</subject><subject>Stop codon</subject><subject>Stress, Physiological</subject><subject>Transfer RNA</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1vFDEQhi0EIuHgD1CglWhoFsbf3gYpCkmIFJEGaC2v7QuO9uzD9iLdv8eXPY6PgspjzzuvZ-ZB6CWGtxioelcY5mrogeAeYMC0Z4_QKeac9IyJ4fEx5nCCnpVyD0CFwOopOqFMKcmVPEVfP-yi2QTb-etLarrb_mqyn87sbjI1pNjZFGtOU-lqNrEcHrMPMdSwXNycQ7zr4lxz8LF2pWZfynP0ZG2m4l8czhX6cnnx-fxjf3N7dX1-dtNbJlntHQGpnONeOObAj8qu5Sj4gLmQ4zgIvqaOCqkEoZQTBXa0znLBMSjqJQi6Qu8X3-08bryzrYNsJr3NYWPyTicT9N-ZGL7pu_RDK4VBUtUM3hwMcvo--1L1JhTrp8lEn-aiiQDF6UDwXvr6H-l9mnNs4zUVYdBotA2vEFlUNqdSsl8fm8Gg99j0gk03bPoBm2at6NWfYxxLfnFqAroIyna_bp9___0f258O8aPe</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shu, Xin Erica</creator><creator>Mao, Yuanhui</creator><creator>Jia, Longfei</creator><creator>Qian, Shu-Bing</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4127-1136</orcidid><orcidid>https://orcid.org/0000-0002-0893-2588</orcidid></search><sort><creationdate>20220201</creationdate><title>Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress</title><author>Shu, Xin Erica ; Mao, Yuanhui ; Jia, Longfei ; Qian, Shu-Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d2078dd5e6d4d0eb8cf7b6591567bb965f3d367862335280cbcdc5651083e7063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/337/574</topic><topic>631/92/221</topic><topic>631/92/458</topic><topic>631/92/500</topic><topic>Activating transcription factor 4</topic><topic>Amino acids</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Cell Proliferation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Codon, Terminator</topic><topic>Codons</topic><topic>CRISPR</topic><topic>Culture Media - chemistry</topic><topic>DNA, Complementary</topic><topic>Elongation</topic><topic>Eukaryotic Initiation Factor-3 - genetics</topic><topic>Eukaryotic Initiation Factor-3 - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Initiation factors</topic><topic>N-Acetylglucosamine</topic><topic>Nutrient retention</topic><topic>O-GlcNAcylation</topic><topic>Open reading frames</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Signal transduction</topic><topic>Stop codon</topic><topic>Stress, Physiological</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Jia, Longfei</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Xin Erica</au><au>Mao, Yuanhui</au><au>Jia, Longfei</au><au>Qian, Shu-Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>134</spage><epage>141</epage><pages>134-141</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3–80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3–80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O -linked N -acetylglucosamine ( O -GlcNAc) modification in response to nutrient starvation. Stress-induced de- O -GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming. Nutrient stress induces ATF4 expression via translation reinitiation, which involves eIF3 retainment on the elongating ribosome. This translational reprogramming is mediated by stress-induced removal of the O -GlcNAc modification from eIF3a.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34887587</pmid><doi>10.1038/s41589-021-00913-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4127-1136</orcidid><orcidid>https://orcid.org/0000-0002-0893-2588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2022-02, Vol.18 (2), p.134-141
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810738
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/337/574
631/92/221
631/92/458
631/92/500
Activating transcription factor 4
Amino acids
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cell Proliferation
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Codon, Terminator
Codons
CRISPR
Culture Media - chemistry
DNA, Complementary
Elongation
Eukaryotic Initiation Factor-3 - genetics
Eukaryotic Initiation Factor-3 - metabolism
Gene Expression Regulation - physiology
Genome editing
Genomes
HEK293 Cells
HeLa Cells
Humans
Initiation factors
N-Acetylglucosamine
Nutrient retention
O-GlcNAcylation
Open reading frames
Peptide Chain Initiation, Translational
Signal transduction
Stop codon
Stress, Physiological
Transfer RNA
title Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20eIF3a%20O-GlcNAcylation%20controls%20translation%20reinitiation%20during%20nutrient%20stress&rft.jtitle=Nature%20chemical%20biology&rft.au=Shu,%20Xin%20Erica&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=134&rft.epage=141&rft.pages=134-141&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-021-00913-4&rft_dat=%3Cproquest_pubme%3E2608539218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624041500&rft_id=info:pmid/34887587&rfr_iscdi=true