Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats

Intraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2022-02, Vol.281, p.121333-121333, Article 121333
Hauptverfasser: Moncal, Kazim K., Tigli Aydın, R. Seda, Godzik, Kevin P., Acri, Timothy M., Heo, Dong N., Rizk, Elias, Wee, Hwabok, Lewis, Gregory S., Salem, Aliasger K., Ozbolat, Ibrahim T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121333
container_issue
container_start_page 121333
container_title Biomaterials
container_volume 281
creator Moncal, Kazim K.
Tigli Aydın, R. Seda
Godzik, Kevin P.
Acri, Timothy M.
Heo, Dong N.
Rizk, Elias
Wee, Hwabok
Lewis, Gregory S.
Salem, Aliasger K.
Ozbolat, Ibrahim T.
description Intraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the current limitations of traditionally fabricated non-viral gene delivery systems through direct IOB of bone constructs into defect sites. We used a controlled co-delivery release of growth factors from a gene-activated matrix (an osteogenic bioink loaded with plasmid-DNAs (pDNA)) to promote bone repair. The controlled co-delivery approach was achieved from the combination of platelet-derived growth factor-B encoded plasmid-DNA (pPDGF-B) and chitosan-nanoparticle encapsulating pDNA encoded with bone morphogenetic protein-2 (CS-NPs(pBMP2)), which facilitated a burst release of pPDGF-B in 10 days, and a sustained release of pBMP-2 for 5 weeks in vitro. The controlled co-delivery approach was tested for its potential to repair critical-sized rat calvarial defects. The controlled-released pDNAs from the intraoperatively bioprinted bone constructs resulted in ∼40% bone tissue formation and ∼90% bone coverage area at 6 weeks compared to ∼10% new bone tissue and ∼25% total bone coverage area in empty defects. The delivery of growth factors incorporated within the intraoperatively bioprinted constructs could pose as an effective way to enhance bone regeneration in patients with cranial injuries in the future.
doi_str_mv 10.1016/j.biomaterials.2021.121333
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296122100689X</els_id><sourcerecordid>2618225259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-99fa42afbb3c28fb2f1891d3b92fe94651b76649e3f68f048091d9b847f5b0a73</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhFZDFik2mtuMkNgskOqUXqVW7gLVlO8fUoyQOdibSvESfGYcpVbtjZR2f7_zn8iP0iZI1JbQ-2a6ND72eIHrdpTUjjK4po2VZvkIrKhpRVJJUr9GKUM4KWVN2hN6ltCU5Jpy9RUcllzIzfIUeNmGYYug6aPEmFC10foa4x8Hh8e7s4rw4xXpo8Xh6c1cw7GLosc8FOowQ9ZTZbo_zNGPMv1nChAGwDUOa4s5OCft-jGGGhKd7wBFG7eMibXU362V63IKDv-CAs156j964vBN8eHyP0c_z7z82l8X17cXV5tt1YblopkJKpznTzpjSMuEMc1RI2pZGMgeS1xU1TV1zCaWrhSNckJyVRvDGVYbopjxGXw-648700FpYdupUXqPXca-C9uplZvD36leYlRCUNGQR-PwoEMPvHaRJ9T5Z6Do9QNglxWoqGKtYJTP65YDaGFKK4J7aUKIWQ9VWPTdULYaqg6G5-OPzQZ9K_zmYgbMDAPlcs4eokvUwWGh9zJdVbfD_0-cP_La8Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618225259</pqid></control><display><type>article</type><title>Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Moncal, Kazim K. ; Tigli Aydın, R. Seda ; Godzik, Kevin P. ; Acri, Timothy M. ; Heo, Dong N. ; Rizk, Elias ; Wee, Hwabok ; Lewis, Gregory S. ; Salem, Aliasger K. ; Ozbolat, Ibrahim T.</creator><creatorcontrib>Moncal, Kazim K. ; Tigli Aydın, R. Seda ; Godzik, Kevin P. ; Acri, Timothy M. ; Heo, Dong N. ; Rizk, Elias ; Wee, Hwabok ; Lewis, Gregory S. ; Salem, Aliasger K. ; Ozbolat, Ibrahim T.</creatorcontrib><description>Intraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the current limitations of traditionally fabricated non-viral gene delivery systems through direct IOB of bone constructs into defect sites. We used a controlled co-delivery release of growth factors from a gene-activated matrix (an osteogenic bioink loaded with plasmid-DNAs (pDNA)) to promote bone repair. The controlled co-delivery approach was achieved from the combination of platelet-derived growth factor-B encoded plasmid-DNA (pPDGF-B) and chitosan-nanoparticle encapsulating pDNA encoded with bone morphogenetic protein-2 (CS-NPs(pBMP2)), which facilitated a burst release of pPDGF-B in 10 days, and a sustained release of pBMP-2 for 5 weeks in vitro. The controlled co-delivery approach was tested for its potential to repair critical-sized rat calvarial defects. The controlled-released pDNAs from the intraoperatively bioprinted bone constructs resulted in ∼40% bone tissue formation and ∼90% bone coverage area at 6 weeks compared to ∼10% new bone tissue and ∼25% total bone coverage area in empty defects. The delivery of growth factors incorporated within the intraoperatively bioprinted constructs could pose as an effective way to enhance bone regeneration in patients with cranial injuries in the future.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121333</identifier><identifier>PMID: 34995904</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Bioprinting - methods ; Bone and Bones ; Bone Morphogenetic Protein 2 - pharmacology ; Bone Regeneration - genetics ; Controlled co-delivery ; Gene Transfer Techniques ; Humans ; In-situ delivery ; Intraoperative bioprinting ; Osteogenesis ; Plasmid-DNAs ; Rats</subject><ispartof>Biomaterials, 2022-02, Vol.281, p.121333-121333, Article 121333</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-99fa42afbb3c28fb2f1891d3b92fe94651b76649e3f68f048091d9b847f5b0a73</citedby><cites>FETCH-LOGICAL-c487t-99fa42afbb3c28fb2f1891d3b92fe94651b76649e3f68f048091d9b847f5b0a73</cites><orcidid>0000-0002-2875-4803 ; 0000-0002-2806-3551 ; 0000-0002-1923-6633 ; 0000-0001-8328-4528 ; 0000-0001-8758-6769 ; 0000-0002-4184-5320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296122100689X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34995904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moncal, Kazim K.</creatorcontrib><creatorcontrib>Tigli Aydın, R. Seda</creatorcontrib><creatorcontrib>Godzik, Kevin P.</creatorcontrib><creatorcontrib>Acri, Timothy M.</creatorcontrib><creatorcontrib>Heo, Dong N.</creatorcontrib><creatorcontrib>Rizk, Elias</creatorcontrib><creatorcontrib>Wee, Hwabok</creatorcontrib><creatorcontrib>Lewis, Gregory S.</creatorcontrib><creatorcontrib>Salem, Aliasger K.</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><title>Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Intraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the current limitations of traditionally fabricated non-viral gene delivery systems through direct IOB of bone constructs into defect sites. We used a controlled co-delivery release of growth factors from a gene-activated matrix (an osteogenic bioink loaded with plasmid-DNAs (pDNA)) to promote bone repair. The controlled co-delivery approach was achieved from the combination of platelet-derived growth factor-B encoded plasmid-DNA (pPDGF-B) and chitosan-nanoparticle encapsulating pDNA encoded with bone morphogenetic protein-2 (CS-NPs(pBMP2)), which facilitated a burst release of pPDGF-B in 10 days, and a sustained release of pBMP-2 for 5 weeks in vitro. The controlled co-delivery approach was tested for its potential to repair critical-sized rat calvarial defects. The controlled-released pDNAs from the intraoperatively bioprinted bone constructs resulted in ∼40% bone tissue formation and ∼90% bone coverage area at 6 weeks compared to ∼10% new bone tissue and ∼25% total bone coverage area in empty defects. The delivery of growth factors incorporated within the intraoperatively bioprinted constructs could pose as an effective way to enhance bone regeneration in patients with cranial injuries in the future.</description><subject>Animals</subject><subject>Bioprinting - methods</subject><subject>Bone and Bones</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Bone Regeneration - genetics</subject><subject>Controlled co-delivery</subject><subject>Gene Transfer Techniques</subject><subject>Humans</subject><subject>In-situ delivery</subject><subject>Intraoperative bioprinting</subject><subject>Osteogenesis</subject><subject>Plasmid-DNAs</subject><subject>Rats</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhFZDFik2mtuMkNgskOqUXqVW7gLVlO8fUoyQOdibSvESfGYcpVbtjZR2f7_zn8iP0iZI1JbQ-2a6ND72eIHrdpTUjjK4po2VZvkIrKhpRVJJUr9GKUM4KWVN2hN6ltCU5Jpy9RUcllzIzfIUeNmGYYug6aPEmFC10foa4x8Hh8e7s4rw4xXpo8Xh6c1cw7GLosc8FOowQ9ZTZbo_zNGPMv1nChAGwDUOa4s5OCft-jGGGhKd7wBFG7eMibXU362V63IKDv-CAs156j964vBN8eHyP0c_z7z82l8X17cXV5tt1YblopkJKpznTzpjSMuEMc1RI2pZGMgeS1xU1TV1zCaWrhSNckJyVRvDGVYbopjxGXw-648700FpYdupUXqPXca-C9uplZvD36leYlRCUNGQR-PwoEMPvHaRJ9T5Z6Do9QNglxWoqGKtYJTP65YDaGFKK4J7aUKIWQ9VWPTdULYaqg6G5-OPzQZ9K_zmYgbMDAPlcs4eokvUwWGh9zJdVbfD_0-cP_La8Iw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Moncal, Kazim K.</creator><creator>Tigli Aydın, R. Seda</creator><creator>Godzik, Kevin P.</creator><creator>Acri, Timothy M.</creator><creator>Heo, Dong N.</creator><creator>Rizk, Elias</creator><creator>Wee, Hwabok</creator><creator>Lewis, Gregory S.</creator><creator>Salem, Aliasger K.</creator><creator>Ozbolat, Ibrahim T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2875-4803</orcidid><orcidid>https://orcid.org/0000-0002-2806-3551</orcidid><orcidid>https://orcid.org/0000-0002-1923-6633</orcidid><orcidid>https://orcid.org/0000-0001-8328-4528</orcidid><orcidid>https://orcid.org/0000-0001-8758-6769</orcidid><orcidid>https://orcid.org/0000-0002-4184-5320</orcidid></search><sort><creationdate>20220201</creationdate><title>Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats</title><author>Moncal, Kazim K. ; Tigli Aydın, R. Seda ; Godzik, Kevin P. ; Acri, Timothy M. ; Heo, Dong N. ; Rizk, Elias ; Wee, Hwabok ; Lewis, Gregory S. ; Salem, Aliasger K. ; Ozbolat, Ibrahim T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-99fa42afbb3c28fb2f1891d3b92fe94651b76649e3f68f048091d9b847f5b0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Bioprinting - methods</topic><topic>Bone and Bones</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Bone Regeneration - genetics</topic><topic>Controlled co-delivery</topic><topic>Gene Transfer Techniques</topic><topic>Humans</topic><topic>In-situ delivery</topic><topic>Intraoperative bioprinting</topic><topic>Osteogenesis</topic><topic>Plasmid-DNAs</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moncal, Kazim K.</creatorcontrib><creatorcontrib>Tigli Aydın, R. Seda</creatorcontrib><creatorcontrib>Godzik, Kevin P.</creatorcontrib><creatorcontrib>Acri, Timothy M.</creatorcontrib><creatorcontrib>Heo, Dong N.</creatorcontrib><creatorcontrib>Rizk, Elias</creatorcontrib><creatorcontrib>Wee, Hwabok</creatorcontrib><creatorcontrib>Lewis, Gregory S.</creatorcontrib><creatorcontrib>Salem, Aliasger K.</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moncal, Kazim K.</au><au>Tigli Aydın, R. Seda</au><au>Godzik, Kevin P.</au><au>Acri, Timothy M.</au><au>Heo, Dong N.</au><au>Rizk, Elias</au><au>Wee, Hwabok</au><au>Lewis, Gregory S.</au><au>Salem, Aliasger K.</au><au>Ozbolat, Ibrahim T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>281</volume><spage>121333</spage><epage>121333</epage><pages>121333-121333</pages><artnum>121333</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Intraoperative bioprinting (IOB), which refers to the bioprinting process performed on a live subject in a surgical setting, has made it feasible to directly deliver gene-activated matrices into craniomaxillofacial (CMF) defect sites. In this study, we demonstrated a novel approach to overcome the current limitations of traditionally fabricated non-viral gene delivery systems through direct IOB of bone constructs into defect sites. We used a controlled co-delivery release of growth factors from a gene-activated matrix (an osteogenic bioink loaded with plasmid-DNAs (pDNA)) to promote bone repair. The controlled co-delivery approach was achieved from the combination of platelet-derived growth factor-B encoded plasmid-DNA (pPDGF-B) and chitosan-nanoparticle encapsulating pDNA encoded with bone morphogenetic protein-2 (CS-NPs(pBMP2)), which facilitated a burst release of pPDGF-B in 10 days, and a sustained release of pBMP-2 for 5 weeks in vitro. The controlled co-delivery approach was tested for its potential to repair critical-sized rat calvarial defects. The controlled-released pDNAs from the intraoperatively bioprinted bone constructs resulted in ∼40% bone tissue formation and ∼90% bone coverage area at 6 weeks compared to ∼10% new bone tissue and ∼25% total bone coverage area in empty defects. The delivery of growth factors incorporated within the intraoperatively bioprinted constructs could pose as an effective way to enhance bone regeneration in patients with cranial injuries in the future.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34995904</pmid><doi>10.1016/j.biomaterials.2021.121333</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2875-4803</orcidid><orcidid>https://orcid.org/0000-0002-2806-3551</orcidid><orcidid>https://orcid.org/0000-0002-1923-6633</orcidid><orcidid>https://orcid.org/0000-0001-8328-4528</orcidid><orcidid>https://orcid.org/0000-0001-8758-6769</orcidid><orcidid>https://orcid.org/0000-0002-4184-5320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2022-02, Vol.281, p.121333-121333, Article 121333
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810707
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Bioprinting - methods
Bone and Bones
Bone Morphogenetic Protein 2 - pharmacology
Bone Regeneration - genetics
Controlled co-delivery
Gene Transfer Techniques
Humans
In-situ delivery
Intraoperative bioprinting
Osteogenesis
Plasmid-DNAs
Rats
title Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Co-delivery%20of%20pPDGF-B%20and%20pBMP-2%20from%20intraoperatively%20bioprinted%20bone%20constructs%20improves%20the%20repair%20of%20calvarial%20defects%20in%20rats&rft.jtitle=Biomaterials&rft.au=Moncal,%20Kazim%20K.&rft.date=2022-02-01&rft.volume=281&rft.spage=121333&rft.epage=121333&rft.pages=121333-121333&rft.artnum=121333&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121333&rft_dat=%3Cproquest_pubme%3E2618225259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618225259&rft_id=info:pmid/34995904&rft_els_id=S014296122100689X&rfr_iscdi=true