Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a mac...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2021-02, Vol.24 (2), p.186-196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 186 |
container_title | Nature neuroscience |
container_volume | 24 |
creator | Zhu, Xiaowei Zhou, Bo Pattni, Reenal Gleason, Kelly Tan, Chunfeng Kalinowski, Agnieszka Sloan, Steven Fiston-Lavier, Anna-Sophie Mariani, Jessica Petrov, Dmitri Barres, Ben A. Duncan, Laramie Abyzov, Alexej Vogel, Hannes Moran, John V. Vaccarino, Flora M. Tamminga, Carol A. Levinson, Douglas F. Urban, Alexander E. |
description | Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and
Alu
retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (
CNNM2
and
FRMD4A
) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.
Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis. |
doi_str_mv | 10.1038/s41593-020-00767-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8806165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484414547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMofv8BDxLwXE2aSZNcBBG_YMWLnkPapLtZuqkmreC_N-uuq148zTDzzjsvPAidUHJOCZMXCShXrCAlKQgRlShgC-1TDlVBRVlt554oUVQlr_bQQUpzklVcql20xxiwkqpqH9WPppn54HDnTAw-THF07850Cde-M4OLpsPWpyH6ehx8H3Df4tQvzOAbPKHYh-Ticp5yi2fjwgQc3BiXAxMsnnbeHKGdNhu643U9RC-3N8_X98Xk6e7h-mpSNCBgKDgwxY1UrbVG1q2ykgNRwEBIpmxpa9o0hAsqpRJOctOAU5y1hiiqlK0JO0SXK9_XsV4427gw5PT6NfqFiR-6N17_3QQ_09P-XUtJKlrxbHC2Noj92-jSoOf9GEPOrEuQABQ4iKwqV6om9ilF124-UKKXXPSKi85c9BcXDfno9He2zck3iCxgK0HKqzB18ef3P7afEiyaVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484414547</pqid></control><display><type>article</type><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E.</creator><creatorcontrib>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E. ; Brain Somatic Mosaicism Network ; Brain Somatic Mosaicism Network</creatorcontrib><description>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and
Alu
retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (
CNNM2
and
FRMD4A
) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.
Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-00767-4</identifier><identifier>PMID: 33432196</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/109 ; 13/31 ; 14 ; 38 ; 38/35 ; 45/22 ; 45/23 ; 45/29 ; 45/77 ; 631/114/1305 ; 631/208/366 ; 631/378/1689/1799 ; 631/378/2571/1696 ; 631/378/2571/219 ; Adaptor Proteins, Signal Transducing - genetics ; Adult ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cation Transport Proteins - genetics ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Female ; Gene expression ; Gene sequencing ; Genome - genetics ; Genomes ; HeLa Cells ; Hemispheres ; High-Throughput Nucleotide Sequencing ; Humans ; Introns ; Learning algorithms ; Long Interspersed Nucleotide Elements ; Machine Learning ; Mental disorders ; Mental Disorders - genetics ; Mutagenesis, Insertional - genetics ; Nervous system ; Neurobiology ; Neuroglia ; Neuronal-glial interactions ; Neurons ; Neurosciences ; Pathological effects ; Pregnancy ; Retroelements ; Retrotransposition ; Schizophrenia ; Schizophrenia - genetics ; Whole genome sequencing</subject><ispartof>Nature neuroscience, 2021-02, Vol.24 (2), p.186-196</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2023</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</citedby><cites>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</cites><orcidid>0000-0002-5731-3177 ; 0000-0002-7306-6532 ; 0000-0001-6533-7462 ; 0000-0001-5405-6729 ; 0000-0001-9772-933X ; 0000-0001-7769-7684 ; 0000-0003-2167-981X ; 0000-0003-1131-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33432196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaowei</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Pattni, Reenal</creatorcontrib><creatorcontrib>Gleason, Kelly</creatorcontrib><creatorcontrib>Tan, Chunfeng</creatorcontrib><creatorcontrib>Kalinowski, Agnieszka</creatorcontrib><creatorcontrib>Sloan, Steven</creatorcontrib><creatorcontrib>Fiston-Lavier, Anna-Sophie</creatorcontrib><creatorcontrib>Mariani, Jessica</creatorcontrib><creatorcontrib>Petrov, Dmitri</creatorcontrib><creatorcontrib>Barres, Ben A.</creatorcontrib><creatorcontrib>Duncan, Laramie</creatorcontrib><creatorcontrib>Abyzov, Alexej</creatorcontrib><creatorcontrib>Vogel, Hannes</creatorcontrib><creatorcontrib>Moran, John V.</creatorcontrib><creatorcontrib>Vaccarino, Flora M.</creatorcontrib><creatorcontrib>Tamminga, Carol A.</creatorcontrib><creatorcontrib>Levinson, Douglas F.</creatorcontrib><creatorcontrib>Urban, Alexander E.</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and
Alu
retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (
CNNM2
and
FRMD4A
) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.
Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>14</subject><subject>38</subject><subject>38/35</subject><subject>45/22</subject><subject>45/23</subject><subject>45/29</subject><subject>45/77</subject><subject>631/114/1305</subject><subject>631/208/366</subject><subject>631/378/1689/1799</subject><subject>631/378/2571/1696</subject><subject>631/378/2571/219</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adult</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cation Transport Proteins - genetics</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>HeLa Cells</subject><subject>Hemispheres</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Introns</subject><subject>Learning algorithms</subject><subject>Long Interspersed Nucleotide Elements</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Mental Disorders - genetics</subject><subject>Mutagenesis, Insertional - genetics</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Pathological effects</subject><subject>Pregnancy</subject><subject>Retroelements</subject><subject>Retrotransposition</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Whole genome sequencing</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMofv8BDxLwXE2aSZNcBBG_YMWLnkPapLtZuqkmreC_N-uuq148zTDzzjsvPAidUHJOCZMXCShXrCAlKQgRlShgC-1TDlVBRVlt554oUVQlr_bQQUpzklVcql20xxiwkqpqH9WPppn54HDnTAw-THF07850Cde-M4OLpsPWpyH6ehx8H3Df4tQvzOAbPKHYh-Ticp5yi2fjwgQc3BiXAxMsnnbeHKGdNhu643U9RC-3N8_X98Xk6e7h-mpSNCBgKDgwxY1UrbVG1q2ykgNRwEBIpmxpa9o0hAsqpRJOctOAU5y1hiiqlK0JO0SXK9_XsV4427gw5PT6NfqFiR-6N17_3QQ_09P-XUtJKlrxbHC2Noj92-jSoOf9GEPOrEuQABQ4iKwqV6om9ilF124-UKKXXPSKi85c9BcXDfno9He2zck3iCxgK0HKqzB18ef3P7afEiyaVw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhu, Xiaowei</creator><creator>Zhou, Bo</creator><creator>Pattni, Reenal</creator><creator>Gleason, Kelly</creator><creator>Tan, Chunfeng</creator><creator>Kalinowski, Agnieszka</creator><creator>Sloan, Steven</creator><creator>Fiston-Lavier, Anna-Sophie</creator><creator>Mariani, Jessica</creator><creator>Petrov, Dmitri</creator><creator>Barres, Ben A.</creator><creator>Duncan, Laramie</creator><creator>Abyzov, Alexej</creator><creator>Vogel, Hannes</creator><creator>Moran, John V.</creator><creator>Vaccarino, Flora M.</creator><creator>Tamminga, Carol A.</creator><creator>Levinson, Douglas F.</creator><creator>Urban, Alexander E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5731-3177</orcidid><orcidid>https://orcid.org/0000-0002-7306-6532</orcidid><orcidid>https://orcid.org/0000-0001-6533-7462</orcidid><orcidid>https://orcid.org/0000-0001-5405-6729</orcidid><orcidid>https://orcid.org/0000-0001-9772-933X</orcidid><orcidid>https://orcid.org/0000-0001-7769-7684</orcidid><orcidid>https://orcid.org/0000-0003-2167-981X</orcidid><orcidid>https://orcid.org/0000-0003-1131-661X</orcidid></search><sort><creationdate>20210201</creationdate><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><author>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>14</topic><topic>38</topic><topic>38/35</topic><topic>45/22</topic><topic>45/23</topic><topic>45/29</topic><topic>45/77</topic><topic>631/114/1305</topic><topic>631/208/366</topic><topic>631/378/1689/1799</topic><topic>631/378/2571/1696</topic><topic>631/378/2571/219</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adult</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cation Transport Proteins - genetics</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>HeLa Cells</topic><topic>Hemispheres</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Introns</topic><topic>Learning algorithms</topic><topic>Long Interspersed Nucleotide Elements</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Mental Disorders - genetics</topic><topic>Mutagenesis, Insertional - genetics</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Pathological effects</topic><topic>Pregnancy</topic><topic>Retroelements</topic><topic>Retrotransposition</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaowei</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Pattni, Reenal</creatorcontrib><creatorcontrib>Gleason, Kelly</creatorcontrib><creatorcontrib>Tan, Chunfeng</creatorcontrib><creatorcontrib>Kalinowski, Agnieszka</creatorcontrib><creatorcontrib>Sloan, Steven</creatorcontrib><creatorcontrib>Fiston-Lavier, Anna-Sophie</creatorcontrib><creatorcontrib>Mariani, Jessica</creatorcontrib><creatorcontrib>Petrov, Dmitri</creatorcontrib><creatorcontrib>Barres, Ben A.</creatorcontrib><creatorcontrib>Duncan, Laramie</creatorcontrib><creatorcontrib>Abyzov, Alexej</creatorcontrib><creatorcontrib>Vogel, Hannes</creatorcontrib><creatorcontrib>Moran, John V.</creatorcontrib><creatorcontrib>Vaccarino, Flora M.</creatorcontrib><creatorcontrib>Tamminga, Carol A.</creatorcontrib><creatorcontrib>Levinson, Douglas F.</creatorcontrib><creatorcontrib>Urban, Alexander E.</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaowei</au><au>Zhou, Bo</au><au>Pattni, Reenal</au><au>Gleason, Kelly</au><au>Tan, Chunfeng</au><au>Kalinowski, Agnieszka</au><au>Sloan, Steven</au><au>Fiston-Lavier, Anna-Sophie</au><au>Mariani, Jessica</au><au>Petrov, Dmitri</au><au>Barres, Ben A.</au><au>Duncan, Laramie</au><au>Abyzov, Alexej</au><au>Vogel, Hannes</au><au>Moran, John V.</au><au>Vaccarino, Flora M.</au><au>Tamminga, Carol A.</au><au>Levinson, Douglas F.</au><au>Urban, Alexander E.</au><aucorp>Brain Somatic Mosaicism Network</aucorp><aucorp>Brain Somatic Mosaicism Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>186</spage><epage>196</epage><pages>186-196</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and
Alu
retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (
CNNM2
and
FRMD4A
) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.
Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33432196</pmid><doi>10.1038/s41593-020-00767-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5731-3177</orcidid><orcidid>https://orcid.org/0000-0002-7306-6532</orcidid><orcidid>https://orcid.org/0000-0001-6533-7462</orcidid><orcidid>https://orcid.org/0000-0001-5405-6729</orcidid><orcidid>https://orcid.org/0000-0001-9772-933X</orcidid><orcidid>https://orcid.org/0000-0001-7769-7684</orcidid><orcidid>https://orcid.org/0000-0003-2167-981X</orcidid><orcidid>https://orcid.org/0000-0003-1131-661X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2021-02, Vol.24 (2), p.186-196 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8806165 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | 13/106 13/109 13/31 14 38 38/35 45/22 45/23 45/29 45/77 631/114/1305 631/208/366 631/378/1689/1799 631/378/2571/1696 631/378/2571/219 Adaptor Proteins, Signal Transducing - genetics Adult Animal Genetics and Genomics Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain Cation Transport Proteins - genetics Embryogenesis Embryonic Development - genetics Embryonic growth stage Female Gene expression Gene sequencing Genome - genetics Genomes HeLa Cells Hemispheres High-Throughput Nucleotide Sequencing Humans Introns Learning algorithms Long Interspersed Nucleotide Elements Machine Learning Mental disorders Mental Disorders - genetics Mutagenesis, Insertional - genetics Nervous system Neurobiology Neuroglia Neuronal-glial interactions Neurons Neurosciences Pathological effects Pregnancy Retroelements Retrotransposition Schizophrenia Schizophrenia - genetics Whole genome sequencing |
title | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20bilateral%20distribution%20of%20somatic%20L1%20insertions%20in%20human%20neurons%20and%20glia&rft.jtitle=Nature%20neuroscience&rft.au=Zhu,%20Xiaowei&rft.aucorp=Brain%20Somatic%20Mosaicism%20Network&rft.date=2021-02-01&rft.volume=24&rft.issue=2&rft.spage=186&rft.epage=196&rft.pages=186-196&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-00767-4&rft_dat=%3Cproquest_pubme%3E2484414547%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484414547&rft_id=info:pmid/33432196&rfr_iscdi=true |