Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia

Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2021-02, Vol.24 (2), p.186-196
Hauptverfasser: Zhu, Xiaowei, Zhou, Bo, Pattni, Reenal, Gleason, Kelly, Tan, Chunfeng, Kalinowski, Agnieszka, Sloan, Steven, Fiston-Lavier, Anna-Sophie, Mariani, Jessica, Petrov, Dmitri, Barres, Ben A., Duncan, Laramie, Abyzov, Alexej, Vogel, Hannes, Moran, John V., Vaccarino, Flora M., Tamminga, Carol A., Levinson, Douglas F., Urban, Alexander E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 186
container_title Nature neuroscience
container_volume 24
creator Zhu, Xiaowei
Zhou, Bo
Pattni, Reenal
Gleason, Kelly
Tan, Chunfeng
Kalinowski, Agnieszka
Sloan, Steven
Fiston-Lavier, Anna-Sophie
Mariani, Jessica
Petrov, Dmitri
Barres, Ben A.
Duncan, Laramie
Abyzov, Alexej
Vogel, Hannes
Moran, John V.
Vaccarino, Flora M.
Tamminga, Carol A.
Levinson, Douglas F.
Urban, Alexander E.
description Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes ( CNNM2 and FRMD4A ) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.
doi_str_mv 10.1038/s41593-020-00767-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8806165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484414547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMofv8BDxLwXE2aSZNcBBG_YMWLnkPapLtZuqkmreC_N-uuq148zTDzzjsvPAidUHJOCZMXCShXrCAlKQgRlShgC-1TDlVBRVlt554oUVQlr_bQQUpzklVcql20xxiwkqpqH9WPppn54HDnTAw-THF07850Cde-M4OLpsPWpyH6ehx8H3Df4tQvzOAbPKHYh-Ticp5yi2fjwgQc3BiXAxMsnnbeHKGdNhu643U9RC-3N8_X98Xk6e7h-mpSNCBgKDgwxY1UrbVG1q2ykgNRwEBIpmxpa9o0hAsqpRJOctOAU5y1hiiqlK0JO0SXK9_XsV4427gw5PT6NfqFiR-6N17_3QQ_09P-XUtJKlrxbHC2Noj92-jSoOf9GEPOrEuQABQ4iKwqV6om9ilF124-UKKXXPSKi85c9BcXDfno9He2zck3iCxgK0HKqzB18ef3P7afEiyaVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484414547</pqid></control><display><type>article</type><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E.</creator><creatorcontrib>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E. ; Brain Somatic Mosaicism Network ; Brain Somatic Mosaicism Network</creatorcontrib><description>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes ( CNNM2 and FRMD4A ) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-00767-4</identifier><identifier>PMID: 33432196</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/109 ; 13/31 ; 14 ; 38 ; 38/35 ; 45/22 ; 45/23 ; 45/29 ; 45/77 ; 631/114/1305 ; 631/208/366 ; 631/378/1689/1799 ; 631/378/2571/1696 ; 631/378/2571/219 ; Adaptor Proteins, Signal Transducing - genetics ; Adult ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cation Transport Proteins - genetics ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Female ; Gene expression ; Gene sequencing ; Genome - genetics ; Genomes ; HeLa Cells ; Hemispheres ; High-Throughput Nucleotide Sequencing ; Humans ; Introns ; Learning algorithms ; Long Interspersed Nucleotide Elements ; Machine Learning ; Mental disorders ; Mental Disorders - genetics ; Mutagenesis, Insertional - genetics ; Nervous system ; Neurobiology ; Neuroglia ; Neuronal-glial interactions ; Neurons ; Neurosciences ; Pathological effects ; Pregnancy ; Retroelements ; Retrotransposition ; Schizophrenia ; Schizophrenia - genetics ; Whole genome sequencing</subject><ispartof>Nature neuroscience, 2021-02, Vol.24 (2), p.186-196</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2023</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</citedby><cites>FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</cites><orcidid>0000-0002-5731-3177 ; 0000-0002-7306-6532 ; 0000-0001-6533-7462 ; 0000-0001-5405-6729 ; 0000-0001-9772-933X ; 0000-0001-7769-7684 ; 0000-0003-2167-981X ; 0000-0003-1131-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33432196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaowei</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Pattni, Reenal</creatorcontrib><creatorcontrib>Gleason, Kelly</creatorcontrib><creatorcontrib>Tan, Chunfeng</creatorcontrib><creatorcontrib>Kalinowski, Agnieszka</creatorcontrib><creatorcontrib>Sloan, Steven</creatorcontrib><creatorcontrib>Fiston-Lavier, Anna-Sophie</creatorcontrib><creatorcontrib>Mariani, Jessica</creatorcontrib><creatorcontrib>Petrov, Dmitri</creatorcontrib><creatorcontrib>Barres, Ben A.</creatorcontrib><creatorcontrib>Duncan, Laramie</creatorcontrib><creatorcontrib>Abyzov, Alexej</creatorcontrib><creatorcontrib>Vogel, Hannes</creatorcontrib><creatorcontrib>Moran, John V.</creatorcontrib><creatorcontrib>Vaccarino, Flora M.</creatorcontrib><creatorcontrib>Tamminga, Carol A.</creatorcontrib><creatorcontrib>Levinson, Douglas F.</creatorcontrib><creatorcontrib>Urban, Alexander E.</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes ( CNNM2 and FRMD4A ) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>14</subject><subject>38</subject><subject>38/35</subject><subject>45/22</subject><subject>45/23</subject><subject>45/29</subject><subject>45/77</subject><subject>631/114/1305</subject><subject>631/208/366</subject><subject>631/378/1689/1799</subject><subject>631/378/2571/1696</subject><subject>631/378/2571/219</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adult</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cation Transport Proteins - genetics</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>HeLa Cells</subject><subject>Hemispheres</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Introns</subject><subject>Learning algorithms</subject><subject>Long Interspersed Nucleotide Elements</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Mental Disorders - genetics</subject><subject>Mutagenesis, Insertional - genetics</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Pathological effects</subject><subject>Pregnancy</subject><subject>Retroelements</subject><subject>Retrotransposition</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Whole genome sequencing</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMofv8BDxLwXE2aSZNcBBG_YMWLnkPapLtZuqkmreC_N-uuq148zTDzzjsvPAidUHJOCZMXCShXrCAlKQgRlShgC-1TDlVBRVlt554oUVQlr_bQQUpzklVcql20xxiwkqpqH9WPppn54HDnTAw-THF07850Cde-M4OLpsPWpyH6ehx8H3Df4tQvzOAbPKHYh-Ticp5yi2fjwgQc3BiXAxMsnnbeHKGdNhu643U9RC-3N8_X98Xk6e7h-mpSNCBgKDgwxY1UrbVG1q2ykgNRwEBIpmxpa9o0hAsqpRJOctOAU5y1hiiqlK0JO0SXK9_XsV4427gw5PT6NfqFiR-6N17_3QQ_09P-XUtJKlrxbHC2Noj92-jSoOf9GEPOrEuQABQ4iKwqV6om9ilF124-UKKXXPSKi85c9BcXDfno9He2zck3iCxgK0HKqzB18ef3P7afEiyaVw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhu, Xiaowei</creator><creator>Zhou, Bo</creator><creator>Pattni, Reenal</creator><creator>Gleason, Kelly</creator><creator>Tan, Chunfeng</creator><creator>Kalinowski, Agnieszka</creator><creator>Sloan, Steven</creator><creator>Fiston-Lavier, Anna-Sophie</creator><creator>Mariani, Jessica</creator><creator>Petrov, Dmitri</creator><creator>Barres, Ben A.</creator><creator>Duncan, Laramie</creator><creator>Abyzov, Alexej</creator><creator>Vogel, Hannes</creator><creator>Moran, John V.</creator><creator>Vaccarino, Flora M.</creator><creator>Tamminga, Carol A.</creator><creator>Levinson, Douglas F.</creator><creator>Urban, Alexander E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5731-3177</orcidid><orcidid>https://orcid.org/0000-0002-7306-6532</orcidid><orcidid>https://orcid.org/0000-0001-6533-7462</orcidid><orcidid>https://orcid.org/0000-0001-5405-6729</orcidid><orcidid>https://orcid.org/0000-0001-9772-933X</orcidid><orcidid>https://orcid.org/0000-0001-7769-7684</orcidid><orcidid>https://orcid.org/0000-0003-2167-981X</orcidid><orcidid>https://orcid.org/0000-0003-1131-661X</orcidid></search><sort><creationdate>20210201</creationdate><title>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</title><author>Zhu, Xiaowei ; Zhou, Bo ; Pattni, Reenal ; Gleason, Kelly ; Tan, Chunfeng ; Kalinowski, Agnieszka ; Sloan, Steven ; Fiston-Lavier, Anna-Sophie ; Mariani, Jessica ; Petrov, Dmitri ; Barres, Ben A. ; Duncan, Laramie ; Abyzov, Alexej ; Vogel, Hannes ; Moran, John V. ; Vaccarino, Flora M. ; Tamminga, Carol A. ; Levinson, Douglas F. ; Urban, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-54395a89fdda8bf9d854094347839d2db1cc05718897e85ac4e953fa09199db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>14</topic><topic>38</topic><topic>38/35</topic><topic>45/22</topic><topic>45/23</topic><topic>45/29</topic><topic>45/77</topic><topic>631/114/1305</topic><topic>631/208/366</topic><topic>631/378/1689/1799</topic><topic>631/378/2571/1696</topic><topic>631/378/2571/219</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adult</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cation Transport Proteins - genetics</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>HeLa Cells</topic><topic>Hemispheres</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Introns</topic><topic>Learning algorithms</topic><topic>Long Interspersed Nucleotide Elements</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Mental Disorders - genetics</topic><topic>Mutagenesis, Insertional - genetics</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Pathological effects</topic><topic>Pregnancy</topic><topic>Retroelements</topic><topic>Retrotransposition</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaowei</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Pattni, Reenal</creatorcontrib><creatorcontrib>Gleason, Kelly</creatorcontrib><creatorcontrib>Tan, Chunfeng</creatorcontrib><creatorcontrib>Kalinowski, Agnieszka</creatorcontrib><creatorcontrib>Sloan, Steven</creatorcontrib><creatorcontrib>Fiston-Lavier, Anna-Sophie</creatorcontrib><creatorcontrib>Mariani, Jessica</creatorcontrib><creatorcontrib>Petrov, Dmitri</creatorcontrib><creatorcontrib>Barres, Ben A.</creatorcontrib><creatorcontrib>Duncan, Laramie</creatorcontrib><creatorcontrib>Abyzov, Alexej</creatorcontrib><creatorcontrib>Vogel, Hannes</creatorcontrib><creatorcontrib>Moran, John V.</creatorcontrib><creatorcontrib>Vaccarino, Flora M.</creatorcontrib><creatorcontrib>Tamminga, Carol A.</creatorcontrib><creatorcontrib>Levinson, Douglas F.</creatorcontrib><creatorcontrib>Urban, Alexander E.</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><creatorcontrib>Brain Somatic Mosaicism Network</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaowei</au><au>Zhou, Bo</au><au>Pattni, Reenal</au><au>Gleason, Kelly</au><au>Tan, Chunfeng</au><au>Kalinowski, Agnieszka</au><au>Sloan, Steven</au><au>Fiston-Lavier, Anna-Sophie</au><au>Mariani, Jessica</au><au>Petrov, Dmitri</au><au>Barres, Ben A.</au><au>Duncan, Laramie</au><au>Abyzov, Alexej</au><au>Vogel, Hannes</au><au>Moran, John V.</au><au>Vaccarino, Flora M.</au><au>Tamminga, Carol A.</au><au>Levinson, Douglas F.</au><au>Urban, Alexander E.</au><aucorp>Brain Somatic Mosaicism Network</aucorp><aucorp>Brain Somatic Mosaicism Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>186</spage><epage>196</epage><pages>186-196</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes ( CNNM2 and FRMD4A ) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. Zhu et al. discover that in human brain there is widespread anatomic distribution of low-frequency somatic, mosaic L1 insertions, using deep whole-genome sequencing of neuronal and glial fractions and machine-learning analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33432196</pmid><doi>10.1038/s41593-020-00767-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5731-3177</orcidid><orcidid>https://orcid.org/0000-0002-7306-6532</orcidid><orcidid>https://orcid.org/0000-0001-6533-7462</orcidid><orcidid>https://orcid.org/0000-0001-5405-6729</orcidid><orcidid>https://orcid.org/0000-0001-9772-933X</orcidid><orcidid>https://orcid.org/0000-0001-7769-7684</orcidid><orcidid>https://orcid.org/0000-0003-2167-981X</orcidid><orcidid>https://orcid.org/0000-0003-1131-661X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2021-02, Vol.24 (2), p.186-196
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8806165
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 13/106
13/109
13/31
14
38
38/35
45/22
45/23
45/29
45/77
631/114/1305
631/208/366
631/378/1689/1799
631/378/2571/1696
631/378/2571/219
Adaptor Proteins, Signal Transducing - genetics
Adult
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain
Cation Transport Proteins - genetics
Embryogenesis
Embryonic Development - genetics
Embryonic growth stage
Female
Gene expression
Gene sequencing
Genome - genetics
Genomes
HeLa Cells
Hemispheres
High-Throughput Nucleotide Sequencing
Humans
Introns
Learning algorithms
Long Interspersed Nucleotide Elements
Machine Learning
Mental disorders
Mental Disorders - genetics
Mutagenesis, Insertional - genetics
Nervous system
Neurobiology
Neuroglia
Neuronal-glial interactions
Neurons
Neurosciences
Pathological effects
Pregnancy
Retroelements
Retrotransposition
Schizophrenia
Schizophrenia - genetics
Whole genome sequencing
title Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20bilateral%20distribution%20of%20somatic%20L1%20insertions%20in%20human%20neurons%20and%20glia&rft.jtitle=Nature%20neuroscience&rft.au=Zhu,%20Xiaowei&rft.aucorp=Brain%20Somatic%20Mosaicism%20Network&rft.date=2021-02-01&rft.volume=24&rft.issue=2&rft.spage=186&rft.epage=196&rft.pages=186-196&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-00767-4&rft_dat=%3Cproquest_pubme%3E2484414547%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484414547&rft_id=info:pmid/33432196&rfr_iscdi=true