Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels

The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2018-12, Vol.31 (24), p.10039-10058
Hauptverfasser: Thorsen, Tyler J., Kato, Seiji, Loeb, Norman G., Rose, Fred G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10058
container_issue 24
container_start_page 10039
container_title Journal of climate
container_volume 31
creator Thorsen, Tyler J.
Kato, Seiji
Loeb, Norman G.
Rose, Fred G.
description The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the variability of the radiation budget. The results of these calculations can further be used to construct radiative kernels. A suite of monthly mean observation-based inputs are used for the radiative transfer, including cloud properties from either the diurnally resolved passive-sensor-based CERES synoptic (SYN) data or the combination of the CloudSat cloud radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. The CloudSat/CALIPSO cloud profiles are incorporated via a clustering method that obtains monthly mean cloud properties suitable for accurate radiative transfer calculations. The computed fluxes are validated using the TOA fluxes observed by CERES. Applications of the CERES-PRP methodology are demonstrated by computing the individual contributions to the variability of the radiation budget over multiple years and by deriving water vapor radiative kernels. The calculations for the former are used to show that an approximately linear decomposition of the total flux anomalies is achieved. The observation-based water vapor kernels were used to investigate the accuracy of the GCM-based NCAR CAM3.0 water vapor kernel. Differences between our observation-based kernel and the NCAR one are marginally larger than those inferred by previous comparisons among different GCM kernels.
doi_str_mv 10.1175/JCLI-D-18-0045.1
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8793621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26661477</jstor_id><sourcerecordid>26661477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-5a105f9f805b39b9bea66c29d6b218b2b5c9d7f0f0868c64cb468bb25e98f9ef3</originalsourceid><addsrcrecordid>eNpVkUFvEzEQha2qqA2l916o9sjFZey1vfYFCRIKhUitEJwt2zumW23Wwd5E4t-TbUrUnkaa982b0TxCLhhcMdbI99_myxu6oExTACGv2BGZMcmBghD8mMxAG0F1I-UpeV3KAwDjCuCEnNYSjGS6mZG7W18wb93YpYF-cgXbaoEhrdapdFOvSrH64dpuB2yxusM8brJ_pEvlhvaZ9h3zgH15Q15F1xc8f6pn5Nf155_zr3R5--Vm_nFJg2B6pNIxkNFEDdLXxhuPTqnATas8Z9pzL4NpmwgRtNJBieCF0t5ziUZHg7E-Ix_2vuuNX2EbcBiz6-06dyuX_9rkOvtSGbp7-zttrW5MrTjbGbx7MsjpzwbLaFddCdj3bsC0KZYrLjjUNVc7FPZoyKmUjPGwhoGdgrBTEHZhmbZTEHZyv3x-3mHg_-d3wNs98FDGlA86V0ox0TT1P6DRj-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624203326</pqid></control><display><type>article</type><title>Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Thorsen, Tyler J. ; Kato, Seiji ; Loeb, Norman G. ; Rose, Fred G.</creator><creatorcontrib>Thorsen, Tyler J. ; Kato, Seiji ; Loeb, Norman G. ; Rose, Fred G.</creatorcontrib><description>The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the variability of the radiation budget. The results of these calculations can further be used to construct radiative kernels. A suite of monthly mean observation-based inputs are used for the radiative transfer, including cloud properties from either the diurnally resolved passive-sensor-based CERES synoptic (SYN) data or the combination of the CloudSat cloud radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. The CloudSat/CALIPSO cloud profiles are incorporated via a clustering method that obtains monthly mean cloud properties suitable for accurate radiative transfer calculations. The computed fluxes are validated using the TOA fluxes observed by CERES. Applications of the CERES-PRP methodology are demonstrated by computing the individual contributions to the variability of the radiation budget over multiple years and by deriving water vapor radiative kernels. The calculations for the former are used to show that an approximately linear decomposition of the total flux anomalies is achieved. The observation-based water vapor kernels were used to investigate the accuracy of the GCM-based NCAR CAM3.0 water vapor kernel. Differences between our observation-based kernel and the NCAR one are marginally larger than those inferred by previous comparisons among different GCM kernels.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0045.1</identifier><identifier>PMID: 35095187</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><ispartof>Journal of climate, 2018-12, Vol.31 (24), p.10039-10058</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-5a105f9f805b39b9bea66c29d6b218b2b5c9d7f0f0868c64cb468bb25e98f9ef3</citedby><cites>FETCH-LOGICAL-c418t-5a105f9f805b39b9bea66c29d6b218b2b5c9d7f0f0868c64cb468bb25e98f9ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26661477$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26661477$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3679,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35095187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorsen, Tyler J.</creatorcontrib><creatorcontrib>Kato, Seiji</creatorcontrib><creatorcontrib>Loeb, Norman G.</creatorcontrib><creatorcontrib>Rose, Fred G.</creatorcontrib><title>Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels</title><title>Journal of climate</title><addtitle>J Clim</addtitle><description>The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the variability of the radiation budget. The results of these calculations can further be used to construct radiative kernels. A suite of monthly mean observation-based inputs are used for the radiative transfer, including cloud properties from either the diurnally resolved passive-sensor-based CERES synoptic (SYN) data or the combination of the CloudSat cloud radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. The CloudSat/CALIPSO cloud profiles are incorporated via a clustering method that obtains monthly mean cloud properties suitable for accurate radiative transfer calculations. The computed fluxes are validated using the TOA fluxes observed by CERES. Applications of the CERES-PRP methodology are demonstrated by computing the individual contributions to the variability of the radiation budget over multiple years and by deriving water vapor radiative kernels. The calculations for the former are used to show that an approximately linear decomposition of the total flux anomalies is achieved. The observation-based water vapor kernels were used to investigate the accuracy of the GCM-based NCAR CAM3.0 water vapor kernel. Differences between our observation-based kernel and the NCAR one are marginally larger than those inferred by previous comparisons among different GCM kernels.</description><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkUFvEzEQha2qqA2l916o9sjFZey1vfYFCRIKhUitEJwt2zumW23Wwd5E4t-TbUrUnkaa982b0TxCLhhcMdbI99_myxu6oExTACGv2BGZMcmBghD8mMxAG0F1I-UpeV3KAwDjCuCEnNYSjGS6mZG7W18wb93YpYF-cgXbaoEhrdapdFOvSrH64dpuB2yxusM8brJ_pEvlhvaZ9h3zgH15Q15F1xc8f6pn5Nf155_zr3R5--Vm_nFJg2B6pNIxkNFEDdLXxhuPTqnATas8Z9pzL4NpmwgRtNJBieCF0t5ziUZHg7E-Ix_2vuuNX2EbcBiz6-06dyuX_9rkOvtSGbp7-zttrW5MrTjbGbx7MsjpzwbLaFddCdj3bsC0KZYrLjjUNVc7FPZoyKmUjPGwhoGdgrBTEHZhmbZTEHZyv3x-3mHg_-d3wNs98FDGlA86V0ox0TT1P6DRj-w</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Thorsen, Tyler J.</creator><creator>Kato, Seiji</creator><creator>Loeb, Norman G.</creator><creator>Rose, Fred G.</creator><general>American Meteorological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181215</creationdate><title>Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels</title><author>Thorsen, Tyler J. ; Kato, Seiji ; Loeb, Norman G. ; Rose, Fred G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-5a105f9f805b39b9bea66c29d6b218b2b5c9d7f0f0868c64cb468bb25e98f9ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorsen, Tyler J.</creatorcontrib><creatorcontrib>Kato, Seiji</creatorcontrib><creatorcontrib>Loeb, Norman G.</creatorcontrib><creatorcontrib>Rose, Fred G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorsen, Tyler J.</au><au>Kato, Seiji</au><au>Loeb, Norman G.</au><au>Rose, Fred G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels</atitle><jtitle>Journal of climate</jtitle><addtitle>J Clim</addtitle><date>2018-12-15</date><risdate>2018</risdate><volume>31</volume><issue>24</issue><spage>10039</spage><epage>10058</epage><pages>10039-10058</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the variability of the radiation budget. The results of these calculations can further be used to construct radiative kernels. A suite of monthly mean observation-based inputs are used for the radiative transfer, including cloud properties from either the diurnally resolved passive-sensor-based CERES synoptic (SYN) data or the combination of the CloudSat cloud radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. The CloudSat/CALIPSO cloud profiles are incorporated via a clustering method that obtains monthly mean cloud properties suitable for accurate radiative transfer calculations. The computed fluxes are validated using the TOA fluxes observed by CERES. Applications of the CERES-PRP methodology are demonstrated by computing the individual contributions to the variability of the radiation budget over multiple years and by deriving water vapor radiative kernels. The calculations for the former are used to show that an approximately linear decomposition of the total flux anomalies is achieved. The observation-based water vapor kernels were used to investigate the accuracy of the GCM-based NCAR CAM3.0 water vapor kernel. Differences between our observation-based kernel and the NCAR one are marginally larger than those inferred by previous comparisons among different GCM kernels.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><pmid>35095187</pmid><doi>10.1175/JCLI-D-18-0045.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2018-12, Vol.31 (24), p.10039-10058
issn 0894-8755
1520-0442
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8793621
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
title Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation-Based%20Decomposition%20of%20Radiative%20Perturbations%20and%20Radiative%20Kernels&rft.jtitle=Journal%20of%20climate&rft.au=Thorsen,%20Tyler%20J.&rft.date=2018-12-15&rft.volume=31&rft.issue=24&rft.spage=10039&rft.epage=10058&rft.pages=10039-10058&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0045.1&rft_dat=%3Cjstor_pubme%3E26661477%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624203326&rft_id=info:pmid/35095187&rft_jstor_id=26661477&rfr_iscdi=true