Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns

The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2022-01, Vol.6 (1), p.19-31
Hauptverfasser: Guo, Jimin, De May, Henning, Franco, Stefan, Noureddine, Achraf, Tang, Lien, Brinker, C. J., Kusewitt, Donna F., Adams, Sarah F., Serda, Rita E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 19
container_title Nature biomedical engineering
container_volume 6
creator Guo, Jimin
De May, Henning
Franco, Stefan
Noureddine, Achraf
Tang, Lien
Brinker, C. J.
Kusewitt, Donna F.
Adams, Sarah F.
Serda, Rita E.
description The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4 + T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types. Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.
doi_str_mv 10.1038/s41551-021-00795-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8792180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621815986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBn7FyQ0Kp8SJW4gMTNciaTXVeOvdhJV8uvx2FLKRw4WLb0PvOOZ96qek7Ja0q4fpMFlZI2hJVDVCebw6PqnFGpGi3ab48fvM-qy5xvCCG046JT8ml1xoViUhJ5Xi0bGwBTfWsBXMBcjylONaRj3GJwYL0_1tl5B250ONTzMsUl1YDeF3QJMLsYrHc_inZw867e23m3ljY25wjOzkWYokdYvE2rOmMK-Vn1ZLQ-4-XdfVF9fX_1ZfOxuf784dPm3XUDQom5GZBT1JYPpGtbrQX0ClTfIx8kHawELjVTI1DgirdaWjUiKCY6OaBWIHp-Ub09-e6XfsIBMMzJerNPbrLpaKJ15m8luJ3ZxlujVceoJsXg1Z1Bit8XzLOZXF6ntwHjkg2THeNEiXZFX_6D3pRVleUUqi1mVHa6LRQ7UZBizgnH-89QYtZgzSlYU4I1v4I1h1L04uEY9yW_YywAPwG5SGGL6U_v_9j-BDANs1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621815986</pqid></control><display><type>article</type><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</creator><creatorcontrib>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</creatorcontrib><description>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4 + T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types. Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00795-w</identifier><identifier>PMID: 34725505</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/31 ; 14 ; 14/1 ; 14/19 ; 14/5 ; 59 ; 631/1647 ; 631/250 ; 631/61 ; 64/60 ; 692/308 ; 692/4017 ; Animals ; Antigen presentation ; Antigen processing ; Antigens ; Antigens, Neoplasm ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cancer ; Cancer Vaccines ; CD4 antigen ; Cisplatin ; Decoration ; Dehydration ; Dendritic Cells ; Immunogenicity ; Immunotherapy ; Internalization ; Lymphocytes ; Lymphocytes T ; Mice ; Microenvironments ; Mimicry ; Neoplasms ; Ovarian cancer ; Pathogen-Associated Molecular Pattern Molecules ; Pathogens ; Phenotypes ; Room temperature ; Silicon dioxide ; Tumor Microenvironment ; Tumors ; Vaccines</subject><ispartof>Nature biomedical engineering, 2022-01, Vol.6 (1), p.19-31</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</citedby><cites>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</cites><orcidid>0000-0003-4640-6332 ; 0000-0003-2687-1173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-021-00795-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-021-00795-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34725505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>De May, Henning</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Noureddine, Achraf</creatorcontrib><creatorcontrib>Tang, Lien</creatorcontrib><creatorcontrib>Brinker, C. J.</creatorcontrib><creatorcontrib>Kusewitt, Donna F.</creatorcontrib><creatorcontrib>Adams, Sarah F.</creatorcontrib><creatorcontrib>Serda, Rita E.</creatorcontrib><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4 + T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types. Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</description><subject>13</subject><subject>13/31</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>14/5</subject><subject>59</subject><subject>631/1647</subject><subject>631/250</subject><subject>631/61</subject><subject>64/60</subject><subject>692/308</subject><subject>692/4017</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antigen processing</subject><subject>Antigens</subject><subject>Antigens, Neoplasm</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Vaccines</subject><subject>CD4 antigen</subject><subject>Cisplatin</subject><subject>Decoration</subject><subject>Dehydration</subject><subject>Dendritic Cells</subject><subject>Immunogenicity</subject><subject>Immunotherapy</subject><subject>Internalization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Mimicry</subject><subject>Neoplasms</subject><subject>Ovarian cancer</subject><subject>Pathogen-Associated Molecular Pattern Molecules</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Vaccines</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBn7FyQ0Kp8SJW4gMTNciaTXVeOvdhJV8uvx2FLKRw4WLb0PvOOZ96qek7Ja0q4fpMFlZI2hJVDVCebw6PqnFGpGi3ab48fvM-qy5xvCCG046JT8ml1xoViUhJ5Xi0bGwBTfWsBXMBcjylONaRj3GJwYL0_1tl5B250ONTzMsUl1YDeF3QJMLsYrHc_inZw867e23m3ljY25wjOzkWYokdYvE2rOmMK-Vn1ZLQ-4-XdfVF9fX_1ZfOxuf784dPm3XUDQom5GZBT1JYPpGtbrQX0ClTfIx8kHawELjVTI1DgirdaWjUiKCY6OaBWIHp-Ub09-e6XfsIBMMzJerNPbrLpaKJ15m8luJ3ZxlujVceoJsXg1Z1Bit8XzLOZXF6ntwHjkg2THeNEiXZFX_6D3pRVleUUqi1mVHa6LRQ7UZBizgnH-89QYtZgzSlYU4I1v4I1h1L04uEY9yW_YywAPwG5SGGL6U_v_9j-BDANs1E</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Guo, Jimin</creator><creator>De May, Henning</creator><creator>Franco, Stefan</creator><creator>Noureddine, Achraf</creator><creator>Tang, Lien</creator><creator>Brinker, C. J.</creator><creator>Kusewitt, Donna F.</creator><creator>Adams, Sarah F.</creator><creator>Serda, Rita E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4640-6332</orcidid><orcidid>https://orcid.org/0000-0003-2687-1173</orcidid></search><sort><creationdate>20220101</creationdate><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><author>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13</topic><topic>13/31</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>14/5</topic><topic>59</topic><topic>631/1647</topic><topic>631/250</topic><topic>631/61</topic><topic>64/60</topic><topic>692/308</topic><topic>692/4017</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antigen processing</topic><topic>Antigens</topic><topic>Antigens, Neoplasm</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Vaccines</topic><topic>CD4 antigen</topic><topic>Cisplatin</topic><topic>Decoration</topic><topic>Dehydration</topic><topic>Dendritic Cells</topic><topic>Immunogenicity</topic><topic>Immunotherapy</topic><topic>Internalization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Mimicry</topic><topic>Neoplasms</topic><topic>Ovarian cancer</topic><topic>Pathogen-Associated Molecular Pattern Molecules</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>De May, Henning</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Noureddine, Achraf</creatorcontrib><creatorcontrib>Tang, Lien</creatorcontrib><creatorcontrib>Brinker, C. J.</creatorcontrib><creatorcontrib>Kusewitt, Donna F.</creatorcontrib><creatorcontrib>Adams, Sarah F.</creatorcontrib><creatorcontrib>Serda, Rita E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jimin</au><au>De May, Henning</au><au>Franco, Stefan</au><au>Noureddine, Achraf</au><au>Tang, Lien</au><au>Brinker, C. J.</au><au>Kusewitt, Donna F.</au><au>Adams, Sarah F.</au><au>Serda, Rita E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>19</spage><epage>31</epage><pages>19-31</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4 + T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types. Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34725505</pmid><doi>10.1038/s41551-021-00795-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4640-6332</orcidid><orcidid>https://orcid.org/0000-0003-2687-1173</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2022-01, Vol.6 (1), p.19-31
issn 2157-846X
2157-846X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8792180
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13
13/31
14
14/1
14/19
14/5
59
631/1647
631/250
631/61
64/60
692/308
692/4017
Animals
Antigen presentation
Antigen processing
Antigens
Antigens, Neoplasm
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cancer
Cancer Vaccines
CD4 antigen
Cisplatin
Decoration
Dehydration
Dendritic Cells
Immunogenicity
Immunotherapy
Internalization
Lymphocytes
Lymphocytes T
Mice
Microenvironments
Mimicry
Neoplasms
Ovarian cancer
Pathogen-Associated Molecular Pattern Molecules
Pathogens
Phenotypes
Room temperature
Silicon dioxide
Tumor Microenvironment
Tumors
Vaccines
title Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20vaccines%20from%20cryogenically%20silicified%20tumour%20cells%20functionalized%20with%20pathogen-associated%20molecular%20patterns&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Guo,%20Jimin&rft.date=2022-01-01&rft.volume=6&rft.issue=1&rft.spage=19&rft.epage=31&rft.pages=19-31&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00795-w&rft_dat=%3Cproquest_pubme%3E2621815986%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621815986&rft_id=info:pmid/34725505&rfr_iscdi=true