Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns
The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of sili...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2022-01, Vol.6 (1), p.19-31 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Nature biomedical engineering |
container_volume | 6 |
creator | Guo, Jimin De May, Henning Franco, Stefan Noureddine, Achraf Tang, Lien Brinker, C. J. Kusewitt, Donna F. Adams, Sarah F. Serda, Rita E. |
description | The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4
+
T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns. |
doi_str_mv | 10.1038/s41551-021-00795-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8792180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621815986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBn7FyQ0Kp8SJW4gMTNciaTXVeOvdhJV8uvx2FLKRw4WLb0PvOOZ96qek7Ja0q4fpMFlZI2hJVDVCebw6PqnFGpGi3ab48fvM-qy5xvCCG046JT8ml1xoViUhJ5Xi0bGwBTfWsBXMBcjylONaRj3GJwYL0_1tl5B250ONTzMsUl1YDeF3QJMLsYrHc_inZw867e23m3ljY25wjOzkWYokdYvE2rOmMK-Vn1ZLQ-4-XdfVF9fX_1ZfOxuf784dPm3XUDQom5GZBT1JYPpGtbrQX0ClTfIx8kHawELjVTI1DgirdaWjUiKCY6OaBWIHp-Ub09-e6XfsIBMMzJerNPbrLpaKJ15m8luJ3ZxlujVceoJsXg1Z1Bit8XzLOZXF6ntwHjkg2THeNEiXZFX_6D3pRVleUUqi1mVHa6LRQ7UZBizgnH-89QYtZgzSlYU4I1v4I1h1L04uEY9yW_YywAPwG5SGGL6U_v_9j-BDANs1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621815986</pqid></control><display><type>article</type><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</creator><creatorcontrib>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</creatorcontrib><description>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4
+
T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00795-w</identifier><identifier>PMID: 34725505</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/31 ; 14 ; 14/1 ; 14/19 ; 14/5 ; 59 ; 631/1647 ; 631/250 ; 631/61 ; 64/60 ; 692/308 ; 692/4017 ; Animals ; Antigen presentation ; Antigen processing ; Antigens ; Antigens, Neoplasm ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cancer ; Cancer Vaccines ; CD4 antigen ; Cisplatin ; Decoration ; Dehydration ; Dendritic Cells ; Immunogenicity ; Immunotherapy ; Internalization ; Lymphocytes ; Lymphocytes T ; Mice ; Microenvironments ; Mimicry ; Neoplasms ; Ovarian cancer ; Pathogen-Associated Molecular Pattern Molecules ; Pathogens ; Phenotypes ; Room temperature ; Silicon dioxide ; Tumor Microenvironment ; Tumors ; Vaccines</subject><ispartof>Nature biomedical engineering, 2022-01, Vol.6 (1), p.19-31</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</citedby><cites>FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</cites><orcidid>0000-0003-4640-6332 ; 0000-0003-2687-1173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-021-00795-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-021-00795-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34725505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>De May, Henning</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Noureddine, Achraf</creatorcontrib><creatorcontrib>Tang, Lien</creatorcontrib><creatorcontrib>Brinker, C. J.</creatorcontrib><creatorcontrib>Kusewitt, Donna F.</creatorcontrib><creatorcontrib>Adams, Sarah F.</creatorcontrib><creatorcontrib>Serda, Rita E.</creatorcontrib><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4
+
T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</description><subject>13</subject><subject>13/31</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>14/5</subject><subject>59</subject><subject>631/1647</subject><subject>631/250</subject><subject>631/61</subject><subject>64/60</subject><subject>692/308</subject><subject>692/4017</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antigen processing</subject><subject>Antigens</subject><subject>Antigens, Neoplasm</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Vaccines</subject><subject>CD4 antigen</subject><subject>Cisplatin</subject><subject>Decoration</subject><subject>Dehydration</subject><subject>Dendritic Cells</subject><subject>Immunogenicity</subject><subject>Immunotherapy</subject><subject>Internalization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Mimicry</subject><subject>Neoplasms</subject><subject>Ovarian cancer</subject><subject>Pathogen-Associated Molecular Pattern Molecules</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Vaccines</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBn7FyQ0Kp8SJW4gMTNciaTXVeOvdhJV8uvx2FLKRw4WLb0PvOOZ96qek7Ja0q4fpMFlZI2hJVDVCebw6PqnFGpGi3ab48fvM-qy5xvCCG046JT8ml1xoViUhJ5Xi0bGwBTfWsBXMBcjylONaRj3GJwYL0_1tl5B250ONTzMsUl1YDeF3QJMLsYrHc_inZw867e23m3ljY25wjOzkWYokdYvE2rOmMK-Vn1ZLQ-4-XdfVF9fX_1ZfOxuf784dPm3XUDQom5GZBT1JYPpGtbrQX0ClTfIx8kHawELjVTI1DgirdaWjUiKCY6OaBWIHp-Ub09-e6XfsIBMMzJerNPbrLpaKJ15m8luJ3ZxlujVceoJsXg1Z1Bit8XzLOZXF6ntwHjkg2THeNEiXZFX_6D3pRVleUUqi1mVHa6LRQ7UZBizgnH-89QYtZgzSlYU4I1v4I1h1L04uEY9yW_YywAPwG5SGGL6U_v_9j-BDANs1E</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Guo, Jimin</creator><creator>De May, Henning</creator><creator>Franco, Stefan</creator><creator>Noureddine, Achraf</creator><creator>Tang, Lien</creator><creator>Brinker, C. J.</creator><creator>Kusewitt, Donna F.</creator><creator>Adams, Sarah F.</creator><creator>Serda, Rita E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4640-6332</orcidid><orcidid>https://orcid.org/0000-0003-2687-1173</orcidid></search><sort><creationdate>20220101</creationdate><title>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</title><author>Guo, Jimin ; De May, Henning ; Franco, Stefan ; Noureddine, Achraf ; Tang, Lien ; Brinker, C. J. ; Kusewitt, Donna F. ; Adams, Sarah F. ; Serda, Rita E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-de31e8a3d0966884cb7c7bbe3d51da5c35827fc1c373685a7fec72495de87c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13</topic><topic>13/31</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>14/5</topic><topic>59</topic><topic>631/1647</topic><topic>631/250</topic><topic>631/61</topic><topic>64/60</topic><topic>692/308</topic><topic>692/4017</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antigen processing</topic><topic>Antigens</topic><topic>Antigens, Neoplasm</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Vaccines</topic><topic>CD4 antigen</topic><topic>Cisplatin</topic><topic>Decoration</topic><topic>Dehydration</topic><topic>Dendritic Cells</topic><topic>Immunogenicity</topic><topic>Immunotherapy</topic><topic>Internalization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Mimicry</topic><topic>Neoplasms</topic><topic>Ovarian cancer</topic><topic>Pathogen-Associated Molecular Pattern Molecules</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>De May, Henning</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Noureddine, Achraf</creatorcontrib><creatorcontrib>Tang, Lien</creatorcontrib><creatorcontrib>Brinker, C. J.</creatorcontrib><creatorcontrib>Kusewitt, Donna F.</creatorcontrib><creatorcontrib>Adams, Sarah F.</creatorcontrib><creatorcontrib>Serda, Rita E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jimin</au><au>De May, Henning</au><au>Franco, Stefan</au><au>Noureddine, Achraf</au><au>Tang, Lien</au><au>Brinker, C. J.</au><au>Kusewitt, Donna F.</au><au>Adams, Sarah F.</au><au>Serda, Rita E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>19</spage><epage>31</epage><pages>19-31</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4
+
T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
Efficacious cancer vaccines can be made via the cryogenic silicification of tumour cells followed by the decoration of the silicified surface with pathogen-associated molecular patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34725505</pmid><doi>10.1038/s41551-021-00795-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4640-6332</orcidid><orcidid>https://orcid.org/0000-0003-2687-1173</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2022-01, Vol.6 (1), p.19-31 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8792180 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13 13/31 14 14/1 14/19 14/5 59 631/1647 631/250 631/61 64/60 692/308 692/4017 Animals Antigen presentation Antigen processing Antigens Antigens, Neoplasm Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Cancer Cancer Vaccines CD4 antigen Cisplatin Decoration Dehydration Dendritic Cells Immunogenicity Immunotherapy Internalization Lymphocytes Lymphocytes T Mice Microenvironments Mimicry Neoplasms Ovarian cancer Pathogen-Associated Molecular Pattern Molecules Pathogens Phenotypes Room temperature Silicon dioxide Tumor Microenvironment Tumors Vaccines |
title | Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20vaccines%20from%20cryogenically%20silicified%20tumour%20cells%20functionalized%20with%20pathogen-associated%20molecular%20patterns&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Guo,%20Jimin&rft.date=2022-01-01&rft.volume=6&rft.issue=1&rft.spage=19&rft.epage=31&rft.pages=19-31&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00795-w&rft_dat=%3Cproquest_pubme%3E2621815986%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621815986&rft_id=info:pmid/34725505&rfr_iscdi=true |