Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora
Abstract Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here w...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2022-01, Vol.39 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Molecular biology and evolution |
container_volume | 39 |
creator | Tabata, Eri Itoigawa, Akihiro Koinuma, Takumi Tayama, Hiroshi Kashimura, Akinori Sakaguchi, Masayoshi Matoska, Vaclav Bauer, Peter O Oyama, Fumitaka |
description | Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia. |
doi_str_mv | 10.1093/molbev/msab331 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774868840</galeid><oup_id>10.1093/molbev/msab331</oup_id><sourcerecordid>A774868840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4088f7cac0b8490dcf95da057e373e77883b9df454b5888beafac69ef0183a5d3</originalsourceid><addsrcrecordid>eNqFkcGPEyEUxonRuLV69WhIvOihuyAwwMWk1t3VpNGDekYGHl3MDNSBaeJ_L5vWjSabGA7wHr_35YMPoeeUnFOi2cWYhx4OF2OxPWP0AVpQweSKSqofogWR7cwJU2foSSk_CKGcd91jdMa40lJQuUDfP-UUUwFXV-9sAY_fR6h4C9YXXDP-UqfZ1XmyA7bJ46s5uRpzauXmxqYdFJwDXrvoo2udWGNqIjgmvLFTioc82afoUbBDgWenfYm-XV1-3XxYbT9ff9ystysnhKzNpVJBOutIr7gm3gUtvCVCApMMpFSK9doHLngvlFI92GBdpyEQqpgVni3R26Pufu5H8A5Sba7NfoqjnX6ZbKP59ybFG7PLB6Ok0kToJvDqJDDlnzOUasZYHAyDTZDnYt50RHMhmeINfXlEd3YAE1PITdHd4mYtJVedUu3Xl-j8HqotD2N0OUGIrX_fgJtyKROEO_eUmNu0zTFtc0q7Dbz4-813-J94G_D6COR5_z-x3_WAtvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609457384</pqid></control><display><type>article</type><title>Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tabata, Eri ; Itoigawa, Akihiro ; Koinuma, Takumi ; Tayama, Hiroshi ; Kashimura, Akinori ; Sakaguchi, Masayoshi ; Matoska, Vaclav ; Bauer, Peter O ; Oyama, Fumitaka</creator><creatorcontrib>Tabata, Eri ; Itoigawa, Akihiro ; Koinuma, Takumi ; Tayama, Hiroshi ; Kashimura, Akinori ; Sakaguchi, Masayoshi ; Matoska, Vaclav ; Bauer, Peter O ; Oyama, Fumitaka</creatorcontrib><description>Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msab331</identifier><identifier>PMID: 34897517</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Animals ; Biological products ; Carnivora - metabolism ; Chitin ; Chitin - chemistry ; Chitin - metabolism ; Chitinases - genetics ; Chitinases - metabolism ; Codon ; Diet ; Discoveries ; Dogs ; Enzymes ; Mice</subject><ispartof>Molecular biology and evolution, 2022-01, Vol.39 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>COPYRIGHT 2022 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4088f7cac0b8490dcf95da057e373e77883b9df454b5888beafac69ef0183a5d3</citedby><cites>FETCH-LOGICAL-c557t-4088f7cac0b8490dcf95da057e373e77883b9df454b5888beafac69ef0183a5d3</cites><orcidid>0000-0002-1095-8306 ; 0000-0001-6576-6056 ; 0000-0003-2564-2125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789059/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789059/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34897517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabata, Eri</creatorcontrib><creatorcontrib>Itoigawa, Akihiro</creatorcontrib><creatorcontrib>Koinuma, Takumi</creatorcontrib><creatorcontrib>Tayama, Hiroshi</creatorcontrib><creatorcontrib>Kashimura, Akinori</creatorcontrib><creatorcontrib>Sakaguchi, Masayoshi</creatorcontrib><creatorcontrib>Matoska, Vaclav</creatorcontrib><creatorcontrib>Bauer, Peter O</creatorcontrib><creatorcontrib>Oyama, Fumitaka</creatorcontrib><title>Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biological products</subject><subject>Carnivora - metabolism</subject><subject>Chitin</subject><subject>Chitin - chemistry</subject><subject>Chitin - metabolism</subject><subject>Chitinases - genetics</subject><subject>Chitinases - metabolism</subject><subject>Codon</subject><subject>Diet</subject><subject>Discoveries</subject><subject>Dogs</subject><subject>Enzymes</subject><subject>Mice</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcGPEyEUxonRuLV69WhIvOihuyAwwMWk1t3VpNGDekYGHl3MDNSBaeJ_L5vWjSabGA7wHr_35YMPoeeUnFOi2cWYhx4OF2OxPWP0AVpQweSKSqofogWR7cwJU2foSSk_CKGcd91jdMa40lJQuUDfP-UUUwFXV-9sAY_fR6h4C9YXXDP-UqfZ1XmyA7bJ46s5uRpzauXmxqYdFJwDXrvoo2udWGNqIjgmvLFTioc82afoUbBDgWenfYm-XV1-3XxYbT9ff9ystysnhKzNpVJBOutIr7gm3gUtvCVCApMMpFSK9doHLngvlFI92GBdpyEQqpgVni3R26Pufu5H8A5Sba7NfoqjnX6ZbKP59ybFG7PLB6Ok0kToJvDqJDDlnzOUasZYHAyDTZDnYt50RHMhmeINfXlEd3YAE1PITdHd4mYtJVedUu3Xl-j8HqotD2N0OUGIrX_fgJtyKROEO_eUmNu0zTFtc0q7Dbz4-813-J94G_D6COR5_z-x3_WAtvk</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Tabata, Eri</creator><creator>Itoigawa, Akihiro</creator><creator>Koinuma, Takumi</creator><creator>Tayama, Hiroshi</creator><creator>Kashimura, Akinori</creator><creator>Sakaguchi, Masayoshi</creator><creator>Matoska, Vaclav</creator><creator>Bauer, Peter O</creator><creator>Oyama, Fumitaka</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1095-8306</orcidid><orcidid>https://orcid.org/0000-0001-6576-6056</orcidid><orcidid>https://orcid.org/0000-0003-2564-2125</orcidid></search><sort><creationdate>20220107</creationdate><title>Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora</title><author>Tabata, Eri ; Itoigawa, Akihiro ; Koinuma, Takumi ; Tayama, Hiroshi ; Kashimura, Akinori ; Sakaguchi, Masayoshi ; Matoska, Vaclav ; Bauer, Peter O ; Oyama, Fumitaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4088f7cac0b8490dcf95da057e373e77883b9df454b5888beafac69ef0183a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biological products</topic><topic>Carnivora - metabolism</topic><topic>Chitin</topic><topic>Chitin - chemistry</topic><topic>Chitin - metabolism</topic><topic>Chitinases - genetics</topic><topic>Chitinases - metabolism</topic><topic>Codon</topic><topic>Diet</topic><topic>Discoveries</topic><topic>Dogs</topic><topic>Enzymes</topic><topic>Mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabata, Eri</creatorcontrib><creatorcontrib>Itoigawa, Akihiro</creatorcontrib><creatorcontrib>Koinuma, Takumi</creatorcontrib><creatorcontrib>Tayama, Hiroshi</creatorcontrib><creatorcontrib>Kashimura, Akinori</creatorcontrib><creatorcontrib>Sakaguchi, Masayoshi</creatorcontrib><creatorcontrib>Matoska, Vaclav</creatorcontrib><creatorcontrib>Bauer, Peter O</creatorcontrib><creatorcontrib>Oyama, Fumitaka</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabata, Eri</au><au>Itoigawa, Akihiro</au><au>Koinuma, Takumi</au><au>Tayama, Hiroshi</au><au>Kashimura, Akinori</au><au>Sakaguchi, Masayoshi</au><au>Matoska, Vaclav</au><au>Bauer, Peter O</au><au>Oyama, Fumitaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2022-01-07</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34897517</pmid><doi>10.1093/molbev/msab331</doi><orcidid>https://orcid.org/0000-0002-1095-8306</orcidid><orcidid>https://orcid.org/0000-0001-6576-6056</orcidid><orcidid>https://orcid.org/0000-0003-2564-2125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2022-01, Vol.39 (1) |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789059 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Analysis Animals Biological products Carnivora - metabolism Chitin Chitin - chemistry Chitin - metabolism Chitinases - genetics Chitinases - metabolism Codon Diet Discoveries Dogs Enzymes Mice |
title | Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninsect-Based%20Diet%20Leads%20to%20Structural%20and%20Functional%20Changes%20of%20Acidic%20Chitinase%20in%20Carnivora&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Tabata,%20Eri&rft.date=2022-01-07&rft.volume=39&rft.issue=1&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msab331&rft_dat=%3Cgale_pubme%3EA774868840%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609457384&rft_id=info:pmid/34897517&rft_galeid=A774868840&rft_oup_id=10.1093/molbev/msab331&rfr_iscdi=true |