Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p

Abstract The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms require...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2022-01, Vol.50 (2), p.1017-1032
Hauptverfasser: Imperatore, Joshua A, Cunningham, Caylee L, Pellegrene, Kendy A, Brinson, Robert G, Marino, John P, Evanseck, Jeffrey D, Mihailescu, Mihaela Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1032
container_issue 2
container_start_page 1017
container_title Nucleic acids research
container_volume 50
creator Imperatore, Joshua A
Cunningham, Caylee L
Pellegrene, Kendy A
Brinson, Robert G
Marino, John P
Evanseck, Jeffrey D
Mihailescu, Mihaela Rita
description Abstract The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3′ untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.
doi_str_mv 10.1093/nar/gkab1226
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab1226</oup_id><sourcerecordid>2610412984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-2233e569d3c06c991fa2629d572042c14d288a15c40a96ea652512ad05fddec43</originalsourceid><addsrcrecordid>eNp9kb1vFDEQxS0EIkego0buoMDEHn_cukE6nYAgRSAlQGs59uydye56sfcOwl_PRpdE0FBNMb95b2YeIc8FfyO4lSeDLyebK38pAMwDshDSAFPWwEOy4JJrJrhqjsiTWr9zLpTQ6jE5ksryRmixIONp2my7axryULHsMdIKPcUOexwmmlt6sTq_YOv8jQGNqceSfmOl--Spp1ep1jRs5tl-7PAX9UOkaZiw-DBV-jNNW7rNdaJ9Ov-0YkLyJZPjU_Ko9V3FZ7f1mHx9_-7L-pSdff7wcb06Y0EJMzEAKVEbG2XgJlgrWg8GbNRL4AqCUBGaxgsdFPfWoDcatAAfuW5jxKDkMXl70B13lz3GMJ9TfOfGknpfrl32yf3bGdLWbfLeNcvGcmVmgVe3AiX_2GGdXJ9qwK7zA-ZddWDmzwqwzY3X6wMaSq61YHtvI7i7CcnNIbm7kGb8xd-r3cN3qczAywOQd-P_pf4A3CSbCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610412984</pqid></control><display><type>article</type><title>Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Imperatore, Joshua A ; Cunningham, Caylee L ; Pellegrene, Kendy A ; Brinson, Robert G ; Marino, John P ; Evanseck, Jeffrey D ; Mihailescu, Mihaela Rita</creator><creatorcontrib>Imperatore, Joshua A ; Cunningham, Caylee L ; Pellegrene, Kendy A ; Brinson, Robert G ; Marino, John P ; Evanseck, Jeffrey D ; Mihailescu, Mihaela Rita</creatorcontrib><description>Abstract The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3′ untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab1226</identifier><identifier>PMID: 34908151</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>3' Untranslated Regions - genetics ; Base Sequence ; Binding Sites - genetics ; Conserved Sequence - genetics ; COVID-19 - genetics ; COVID-19 - metabolism ; COVID-19 - virology ; Dimerization ; Genome, Viral - genetics ; Host-Pathogen Interactions - genetics ; Humans ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Nucleic Acid Conformation ; Nucleotide Motifs - genetics ; Proton Magnetic Resonance Spectroscopy - methods ; RNA and RNA-protein complexes ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; SARS-CoV-2 - physiology</subject><ispartof>Nucleic acids research, 2022-01, Vol.50 (2), p.1017-1032</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-2233e569d3c06c991fa2629d572042c14d288a15c40a96ea652512ad05fddec43</citedby><cites>FETCH-LOGICAL-c416t-2233e569d3c06c991fa2629d572042c14d288a15c40a96ea652512ad05fddec43</cites><orcidid>0000-0002-1162-7699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789046/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789046/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34908151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imperatore, Joshua A</creatorcontrib><creatorcontrib>Cunningham, Caylee L</creatorcontrib><creatorcontrib>Pellegrene, Kendy A</creatorcontrib><creatorcontrib>Brinson, Robert G</creatorcontrib><creatorcontrib>Marino, John P</creatorcontrib><creatorcontrib>Evanseck, Jeffrey D</creatorcontrib><creatorcontrib>Mihailescu, Mihaela Rita</creatorcontrib><title>Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3′ untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.</description><subject>3' Untranslated Regions - genetics</subject><subject>Base Sequence</subject><subject>Binding Sites - genetics</subject><subject>Conserved Sequence - genetics</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - virology</subject><subject>Dimerization</subject><subject>Genome, Viral - genetics</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide Motifs - genetics</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>SARS-CoV-2 - physiology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kb1vFDEQxS0EIkego0buoMDEHn_cukE6nYAgRSAlQGs59uydye56sfcOwl_PRpdE0FBNMb95b2YeIc8FfyO4lSeDLyebK38pAMwDshDSAFPWwEOy4JJrJrhqjsiTWr9zLpTQ6jE5ksryRmixIONp2my7axryULHsMdIKPcUOexwmmlt6sTq_YOv8jQGNqceSfmOl--Spp1ep1jRs5tl-7PAX9UOkaZiw-DBV-jNNW7rNdaJ9Ov-0YkLyJZPjU_Ko9V3FZ7f1mHx9_-7L-pSdff7wcb06Y0EJMzEAKVEbG2XgJlgrWg8GbNRL4AqCUBGaxgsdFPfWoDcatAAfuW5jxKDkMXl70B13lz3GMJ9TfOfGknpfrl32yf3bGdLWbfLeNcvGcmVmgVe3AiX_2GGdXJ9qwK7zA-ZddWDmzwqwzY3X6wMaSq61YHtvI7i7CcnNIbm7kGb8xd-r3cN3qczAywOQd-P_pf4A3CSbCQ</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Imperatore, Joshua A</creator><creator>Cunningham, Caylee L</creator><creator>Pellegrene, Kendy A</creator><creator>Brinson, Robert G</creator><creator>Marino, John P</creator><creator>Evanseck, Jeffrey D</creator><creator>Mihailescu, Mihaela Rita</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1162-7699</orcidid></search><sort><creationdate>20220125</creationdate><title>Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p</title><author>Imperatore, Joshua A ; Cunningham, Caylee L ; Pellegrene, Kendy A ; Brinson, Robert G ; Marino, John P ; Evanseck, Jeffrey D ; Mihailescu, Mihaela Rita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-2233e569d3c06c991fa2629d572042c14d288a15c40a96ea652512ad05fddec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>Base Sequence</topic><topic>Binding Sites - genetics</topic><topic>Conserved Sequence - genetics</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - virology</topic><topic>Dimerization</topic><topic>Genome, Viral - genetics</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide Motifs - genetics</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>SARS-CoV-2 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imperatore, Joshua A</creatorcontrib><creatorcontrib>Cunningham, Caylee L</creatorcontrib><creatorcontrib>Pellegrene, Kendy A</creatorcontrib><creatorcontrib>Brinson, Robert G</creatorcontrib><creatorcontrib>Marino, John P</creatorcontrib><creatorcontrib>Evanseck, Jeffrey D</creatorcontrib><creatorcontrib>Mihailescu, Mihaela Rita</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imperatore, Joshua A</au><au>Cunningham, Caylee L</au><au>Pellegrene, Kendy A</au><au>Brinson, Robert G</au><au>Marino, John P</au><au>Evanseck, Jeffrey D</au><au>Mihailescu, Mihaela Rita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2022-01-25</date><risdate>2022</risdate><volume>50</volume><issue>2</issue><spage>1017</spage><epage>1032</epage><pages>1017-1032</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3′ untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34908151</pmid><doi>10.1093/nar/gkab1226</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1162-7699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2022-01, Vol.50 (2), p.1017-1032
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789046
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3' Untranslated Regions - genetics
Base Sequence
Binding Sites - genetics
Conserved Sequence - genetics
COVID-19 - genetics
COVID-19 - metabolism
COVID-19 - virology
Dimerization
Genome, Viral - genetics
Host-Pathogen Interactions - genetics
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
Nucleic Acid Conformation
Nucleotide Motifs - genetics
Proton Magnetic Resonance Spectroscopy - methods
RNA and RNA-protein complexes
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
SARS-CoV-2 - physiology
title Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conserved%20s2m%20element%20of%20SARS-CoV-2%20dimerizes%20via%20a%20kissing%20complex%20and%20interacts%20with%20host%20miRNA-1307-3p&rft.jtitle=Nucleic%20acids%20research&rft.au=Imperatore,%20Joshua%20A&rft.date=2022-01-25&rft.volume=50&rft.issue=2&rft.spage=1017&rft.epage=1032&rft.pages=1017-1032&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab1226&rft_dat=%3Cproquest_pubme%3E2610412984%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610412984&rft_id=info:pmid/34908151&rft_oup_id=10.1093/nar/gkab1226&rfr_iscdi=true