Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images
One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, an...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2022-06, Vol.54 (3), p.2363-2384 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2384 |
---|---|
container_issue | 3 |
container_start_page | 2363 |
container_title | Neural processing letters |
container_volume | 54 |
creator | Vinayaki, V. Desika Kalaiselvi, R. |
description | One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results. |
doi_str_mv | 10.1007/s11063-021-10734-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8784591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</originalsourceid><addsrcrecordid>eNp9kctu1jAUhCNERS_wAiyQJTZsQo8viZ0NUtVSqNSqErQSO8txnMRVYv_YDlLZ973x37TlsmBlS-ebOR5PUbzG8B4D8MOIMdS0BIJLDJyyEp4Ve7jitOScfnue75RDyWqCd4v9GG8AsozAi2KXVtBUlIi94u5imZJNYzBx9FOHzmY1GPTVDLNxSSXrHboyenT2-2LQdbRuQF_M7INCl5tkZ_tzZY6mwYdsM6PeB3RiVWuS1RlN1vmNSuMtOjHJ6Hu4D35Gp4vrlrjuiy-LnV5N0bx6OA-K69OPV8efy_PLT2fHR-elZpylUoBuBYZKNVBxo1TXtbVmPe8o5T2pu4YTWvFWN6QSvKe01pgx0emuaRUQ09KD4sPqu1na2XQ6ZwxqkptgZxVupVdW_j1xdpSD_yEFF6xqcDZ492AQfP6RmORsozbTpJzxS5SkJowAFXSLvv0HvfFLcDmeJA0WlAlSbymyUjr4GIPpnx6DQW5blmvLMrcs71uWkEVv_ozxJHmsNQN0BWIeucGE37v_Y_sLOMS2DA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348261</pqid></control><display><type>article</type><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Vinayaki, V. Desika ; Kalaiselvi, R.</creator><creatorcontrib>Vinayaki, V. Desika ; Kalaiselvi, R.</creatorcontrib><description>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-021-10734-0</identifier><identifier>PMID: 35095328</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Blood vessels ; Classification ; Complex Systems ; Computational Intelligence ; Computer Science ; COVID-19 ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Feature extraction ; Feature selection ; Image classification ; Image segmentation ; Machine learning ; Neural networks ; Optimization ; Retina</subject><ispartof>Neural processing letters, 2022-06, Vol.54 (3), p.2363-2384</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</citedby><cites>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-021-10734-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35095328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinayaki, V. Desika</creatorcontrib><creatorcontrib>Kalaiselvi, R.</creatorcontrib><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><addtitle>Neural Process Lett</addtitle><description>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Retina</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1jAUhCNERS_wAiyQJTZsQo8viZ0NUtVSqNSqErQSO8txnMRVYv_YDlLZ973x37TlsmBlS-ebOR5PUbzG8B4D8MOIMdS0BIJLDJyyEp4Ve7jitOScfnue75RDyWqCd4v9GG8AsozAi2KXVtBUlIi94u5imZJNYzBx9FOHzmY1GPTVDLNxSSXrHboyenT2-2LQdbRuQF_M7INCl5tkZ_tzZY6mwYdsM6PeB3RiVWuS1RlN1vmNSuMtOjHJ6Hu4D35Gp4vrlrjuiy-LnV5N0bx6OA-K69OPV8efy_PLT2fHR-elZpylUoBuBYZKNVBxo1TXtbVmPe8o5T2pu4YTWvFWN6QSvKe01pgx0emuaRUQ09KD4sPqu1na2XQ6ZwxqkptgZxVupVdW_j1xdpSD_yEFF6xqcDZ492AQfP6RmORsozbTpJzxS5SkJowAFXSLvv0HvfFLcDmeJA0WlAlSbymyUjr4GIPpnx6DQW5blmvLMrcs71uWkEVv_ozxJHmsNQN0BWIeucGE37v_Y_sLOMS2DA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Vinayaki, V. Desika</creator><creator>Kalaiselvi, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220601</creationdate><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><author>Vinayaki, V. Desika ; Kalaiselvi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Retina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinayaki, V. Desika</creatorcontrib><creatorcontrib>Kalaiselvi, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinayaki, V. Desika</au><au>Kalaiselvi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><addtitle>Neural Process Lett</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>54</volume><issue>3</issue><spage>2363</spage><epage>2384</epage><pages>2363-2384</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35095328</pmid><doi>10.1007/s11063-021-10734-0</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2022-06, Vol.54 (3), p.2363-2384 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8784591 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Artificial Intelligence Artificial neural networks Blood vessels Classification Complex Systems Computational Intelligence Computer Science COVID-19 Deep learning Diabetes Diabetes mellitus Diabetic retinopathy Feature extraction Feature selection Image classification Image segmentation Machine learning Neural networks Optimization Retina |
title | Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multithreshold%20Image%20Segmentation%20Technique%20Using%20Remora%20Optimization%20Algorithm%20for%20Diabetic%20Retinopathy%20Detection%20from%20Fundus%20Images&rft.jtitle=Neural%20processing%20letters&rft.au=Vinayaki,%20V.%20Desika&rft.date=2022-06-01&rft.volume=54&rft.issue=3&rft.spage=2363&rft.epage=2384&rft.pages=2363-2384&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-021-10734-0&rft_dat=%3Cproquest_pubme%3E2918348261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348261&rft_id=info:pmid/35095328&rfr_iscdi=true |