Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images

One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2022-06, Vol.54 (3), p.2363-2384
Hauptverfasser: Vinayaki, V. Desika, Kalaiselvi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2384
container_issue 3
container_start_page 2363
container_title Neural processing letters
container_volume 54
creator Vinayaki, V. Desika
Kalaiselvi, R.
description One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.
doi_str_mv 10.1007/s11063-021-10734-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8784591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</originalsourceid><addsrcrecordid>eNp9kctu1jAUhCNERS_wAiyQJTZsQo8viZ0NUtVSqNSqErQSO8txnMRVYv_YDlLZ973x37TlsmBlS-ebOR5PUbzG8B4D8MOIMdS0BIJLDJyyEp4Ve7jitOScfnue75RDyWqCd4v9GG8AsozAi2KXVtBUlIi94u5imZJNYzBx9FOHzmY1GPTVDLNxSSXrHboyenT2-2LQdbRuQF_M7INCl5tkZ_tzZY6mwYdsM6PeB3RiVWuS1RlN1vmNSuMtOjHJ6Hu4D35Gp4vrlrjuiy-LnV5N0bx6OA-K69OPV8efy_PLT2fHR-elZpylUoBuBYZKNVBxo1TXtbVmPe8o5T2pu4YTWvFWN6QSvKe01pgx0emuaRUQ09KD4sPqu1na2XQ6ZwxqkptgZxVupVdW_j1xdpSD_yEFF6xqcDZ492AQfP6RmORsozbTpJzxS5SkJowAFXSLvv0HvfFLcDmeJA0WlAlSbymyUjr4GIPpnx6DQW5blmvLMrcs71uWkEVv_ozxJHmsNQN0BWIeucGE37v_Y_sLOMS2DA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348261</pqid></control><display><type>article</type><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Vinayaki, V. Desika ; Kalaiselvi, R.</creator><creatorcontrib>Vinayaki, V. Desika ; Kalaiselvi, R.</creatorcontrib><description>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-021-10734-0</identifier><identifier>PMID: 35095328</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Blood vessels ; Classification ; Complex Systems ; Computational Intelligence ; Computer Science ; COVID-19 ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Feature extraction ; Feature selection ; Image classification ; Image segmentation ; Machine learning ; Neural networks ; Optimization ; Retina</subject><ispartof>Neural processing letters, 2022-06, Vol.54 (3), p.2363-2384</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</citedby><cites>FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-021-10734-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35095328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinayaki, V. Desika</creatorcontrib><creatorcontrib>Kalaiselvi, R.</creatorcontrib><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><addtitle>Neural Process Lett</addtitle><description>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Retina</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1jAUhCNERS_wAiyQJTZsQo8viZ0NUtVSqNSqErQSO8txnMRVYv_YDlLZ973x37TlsmBlS-ebOR5PUbzG8B4D8MOIMdS0BIJLDJyyEp4Ve7jitOScfnue75RDyWqCd4v9GG8AsozAi2KXVtBUlIi94u5imZJNYzBx9FOHzmY1GPTVDLNxSSXrHboyenT2-2LQdbRuQF_M7INCl5tkZ_tzZY6mwYdsM6PeB3RiVWuS1RlN1vmNSuMtOjHJ6Hu4D35Gp4vrlrjuiy-LnV5N0bx6OA-K69OPV8efy_PLT2fHR-elZpylUoBuBYZKNVBxo1TXtbVmPe8o5T2pu4YTWvFWN6QSvKe01pgx0emuaRUQ09KD4sPqu1na2XQ6ZwxqkptgZxVupVdW_j1xdpSD_yEFF6xqcDZ492AQfP6RmORsozbTpJzxS5SkJowAFXSLvv0HvfFLcDmeJA0WlAlSbymyUjr4GIPpnx6DQW5blmvLMrcs71uWkEVv_ozxJHmsNQN0BWIeucGE37v_Y_sLOMS2DA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Vinayaki, V. Desika</creator><creator>Kalaiselvi, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220601</creationdate><title>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</title><author>Vinayaki, V. Desika ; Kalaiselvi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-80cb8105a9057eaaddb6c4f7d337f26d972357bc92587f336c1448dcd9ba02eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Retina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinayaki, V. Desika</creatorcontrib><creatorcontrib>Kalaiselvi, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinayaki, V. Desika</au><au>Kalaiselvi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><addtitle>Neural Process Lett</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>54</volume><issue>3</issue><spage>2363</spage><epage>2384</epage><pages>2363-2384</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>One of the most common complications of diabetes mellitus is diabetic retinopathy (DR), which produces lesions on the retina. A novel framework for DR detection and classification was proposed in this study. The proposed work includes four stages: pre-processing, segmentation, feature extraction, and classification. Initially, the image pre-processing is performed and after that, the Multi threshold-based Remora Optimization (MTRO) algorithm performs the vessel segmentation. The feature extraction and classification process are done by using a Region-based Convolution Neural Network (R-CNN) with Wild Geese Algorithm (WGA). Finally, the proposed R-CNN with WGA effectively classifies the different stages of DR including Non-DR, Proliferative DR, Severe, Moderate DR, Mild DR. The experimental images were collected from the DRIVE database, and the proposed framework exhibited superior DR detection performance. Compared to other existing methods like fully convolutional deep neural network (FCDNN), genetic-search feature selection (GSFS), Convolutional Neural Networks (CNN), and deep learning (DL) techniques, the proposed R-CNN with WGA provided 95.42% accuracy, 93.10% specificity, 93.20% sensitivity, and 98.28% F-score results.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35095328</pmid><doi>10.1007/s11063-021-10734-0</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2022-06, Vol.54 (3), p.2363-2384
issn 1370-4621
1573-773X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8784591
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Blood vessels
Classification
Complex Systems
Computational Intelligence
Computer Science
COVID-19
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Feature extraction
Feature selection
Image classification
Image segmentation
Machine learning
Neural networks
Optimization
Retina
title Multithreshold Image Segmentation Technique Using Remora Optimization Algorithm for Diabetic Retinopathy Detection from Fundus Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multithreshold%20Image%20Segmentation%20Technique%20Using%20Remora%20Optimization%20Algorithm%20for%20Diabetic%20Retinopathy%20Detection%20from%20Fundus%20Images&rft.jtitle=Neural%20processing%20letters&rft.au=Vinayaki,%20V.%20Desika&rft.date=2022-06-01&rft.volume=54&rft.issue=3&rft.spage=2363&rft.epage=2384&rft.pages=2363-2384&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-021-10734-0&rft_dat=%3Cproquest_pubme%3E2918348261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348261&rft_id=info:pmid/35095328&rfr_iscdi=true