Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface

We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (2), p.485
Hauptverfasser: Matsubara, Hiroki, Mori, Rikako, Ohtomi, Eisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 485
container_title Materials
container_volume 15
creator Matsubara, Hiroki
Mori, Rikako
Ohtomi, Eisuke
description We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixed monolayers of a surfactant and an alkane was observed at the air-water interface. Depending on the combination of surfactant and alkane, these wetting monolayers underwent another thermal phase transition upon cooling either to a frozen mixed monolayer (S1) or a bilayer structure composed of a solid monolayer of a pure alkane rested on a liquid-like mixed monolayer (S2). Based on the phase diagrams determined by phase modulation ellipsometry, the difference in the morphology of the nucleated S1 and S2 phase domains was also investigated using Brewster angle microscopy. Domains of the S1 phase were relatively small and highly branched, whereas those of the S2 phase were large and circular. The difference in domain morphology was explained by the competition of the domain line tension and electrostatic dipole interactions between surfactant molecules in the domains.
doi_str_mv 10.3390/ma15020485
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621342524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-59a8a6afb3b11bb30dda3fbe9ece6ecde465df0ab6ebfb528e79a3ab5bb1cc5c3</originalsourceid><addsrcrecordid>eNpdkVtrFjEQhoMottTe-AMk4I0UVnPY7G5uhM_WQ6HViypehkl21qbuJjXJiv33pny1B-diZmAeXmbmJeQ5Z6-l1OzNAlwxwdpBPSK7XOuu4bptH9_rd8h-zheshpR8EPop2ZGKqV4wuUvGz6ubEYqPgcaJnq1pAlcglGYz_4SA9NT_wZGexdmP9DSGOMMVJgphpO_8tj-KC_iQKRRazpFufGq-Q6mD41BzlcNn5MkEc8b9m7pHvn14__XwU3Py5ePx4eakcbJTpVEaBuhgstJybq1k4whysqjRYYduxLZT48TAdmgnq8SAvQYJVlnLnVNO7pG3W93L1S44OgwlwWwuk18gXZkI3jycBH9ufsTfZugH3ne6Cry6EUjx14q5mMVnh_NcPxHXbEQnhBh6IfqKvvwPvYhrCvW8a4rLVijRVupgS7kUc0443S7Dmbn2z9z5V-EX99e_Rf-5Jf8CUbuX4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621342524</pqid></control><display><type>article</type><title>Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Matsubara, Hiroki ; Mori, Rikako ; Ohtomi, Eisuke</creator><creatorcontrib>Matsubara, Hiroki ; Mori, Rikako ; Ohtomi, Eisuke</creatorcontrib><description>We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixed monolayers of a surfactant and an alkane was observed at the air-water interface. Depending on the combination of surfactant and alkane, these wetting monolayers underwent another thermal phase transition upon cooling either to a frozen mixed monolayer (S1) or a bilayer structure composed of a solid monolayer of a pure alkane rested on a liquid-like mixed monolayer (S2). Based on the phase diagrams determined by phase modulation ellipsometry, the difference in the morphology of the nucleated S1 and S2 phase domains was also investigated using Brewster angle microscopy. Domains of the S1 phase were relatively small and highly branched, whereas those of the S2 phase were large and circular. The difference in domain morphology was explained by the competition of the domain line tension and electrostatic dipole interactions between surfactant molecules in the domains.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15020485</identifier><identifier>PMID: 35057203</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alkanes ; Aqueous solutions ; Bilayers ; Brewster angle ; Cetyltrimethylammonium bromide ; Dipole interactions ; Dodecyltrimethylammonium bromide ; Domains ; Ellipsometry ; Hexadecane ; Hydrocarbons ; Lipids ; Membranes ; Microscopy ; Monolayers ; Morphology ; Nucleation ; Phase diagrams ; Phase modulation ; Phase transitions ; Resistance thermometers ; Surfactants ; Tetradecane ; Wetting</subject><ispartof>Materials, 2022-01, Vol.15 (2), p.485</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-59a8a6afb3b11bb30dda3fbe9ece6ecde465df0ab6ebfb528e79a3ab5bb1cc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35057203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsubara, Hiroki</creatorcontrib><creatorcontrib>Mori, Rikako</creatorcontrib><creatorcontrib>Ohtomi, Eisuke</creatorcontrib><title>Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixed monolayers of a surfactant and an alkane was observed at the air-water interface. Depending on the combination of surfactant and alkane, these wetting monolayers underwent another thermal phase transition upon cooling either to a frozen mixed monolayer (S1) or a bilayer structure composed of a solid monolayer of a pure alkane rested on a liquid-like mixed monolayer (S2). Based on the phase diagrams determined by phase modulation ellipsometry, the difference in the morphology of the nucleated S1 and S2 phase domains was also investigated using Brewster angle microscopy. Domains of the S1 phase were relatively small and highly branched, whereas those of the S2 phase were large and circular. The difference in domain morphology was explained by the competition of the domain line tension and electrostatic dipole interactions between surfactant molecules in the domains.</description><subject>Alkanes</subject><subject>Aqueous solutions</subject><subject>Bilayers</subject><subject>Brewster angle</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Dipole interactions</subject><subject>Dodecyltrimethylammonium bromide</subject><subject>Domains</subject><subject>Ellipsometry</subject><subject>Hexadecane</subject><subject>Hydrocarbons</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Phase diagrams</subject><subject>Phase modulation</subject><subject>Phase transitions</subject><subject>Resistance thermometers</subject><subject>Surfactants</subject><subject>Tetradecane</subject><subject>Wetting</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtrFjEQhoMottTe-AMk4I0UVnPY7G5uhM_WQ6HViypehkl21qbuJjXJiv33pny1B-diZmAeXmbmJeQ5Z6-l1OzNAlwxwdpBPSK7XOuu4bptH9_rd8h-zheshpR8EPop2ZGKqV4wuUvGz6ubEYqPgcaJnq1pAlcglGYz_4SA9NT_wZGexdmP9DSGOMMVJgphpO_8tj-KC_iQKRRazpFufGq-Q6mD41BzlcNn5MkEc8b9m7pHvn14__XwU3Py5ePx4eakcbJTpVEaBuhgstJybq1k4whysqjRYYduxLZT48TAdmgnq8SAvQYJVlnLnVNO7pG3W93L1S44OgwlwWwuk18gXZkI3jycBH9ufsTfZugH3ne6Cry6EUjx14q5mMVnh_NcPxHXbEQnhBh6IfqKvvwPvYhrCvW8a4rLVijRVupgS7kUc0443S7Dmbn2z9z5V-EX99e_Rf-5Jf8CUbuX4g</recordid><startdate>20220109</startdate><enddate>20220109</enddate><creator>Matsubara, Hiroki</creator><creator>Mori, Rikako</creator><creator>Ohtomi, Eisuke</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220109</creationdate><title>Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface</title><author>Matsubara, Hiroki ; Mori, Rikako ; Ohtomi, Eisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-59a8a6afb3b11bb30dda3fbe9ece6ecde465df0ab6ebfb528e79a3ab5bb1cc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkanes</topic><topic>Aqueous solutions</topic><topic>Bilayers</topic><topic>Brewster angle</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Dipole interactions</topic><topic>Dodecyltrimethylammonium bromide</topic><topic>Domains</topic><topic>Ellipsometry</topic><topic>Hexadecane</topic><topic>Hydrocarbons</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Phase diagrams</topic><topic>Phase modulation</topic><topic>Phase transitions</topic><topic>Resistance thermometers</topic><topic>Surfactants</topic><topic>Tetradecane</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsubara, Hiroki</creatorcontrib><creatorcontrib>Mori, Rikako</creatorcontrib><creatorcontrib>Ohtomi, Eisuke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsubara, Hiroki</au><au>Mori, Rikako</au><au>Ohtomi, Eisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-01-09</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>485</spage><pages>485-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixed monolayers of a surfactant and an alkane was observed at the air-water interface. Depending on the combination of surfactant and alkane, these wetting monolayers underwent another thermal phase transition upon cooling either to a frozen mixed monolayer (S1) or a bilayer structure composed of a solid monolayer of a pure alkane rested on a liquid-like mixed monolayer (S2). Based on the phase diagrams determined by phase modulation ellipsometry, the difference in the morphology of the nucleated S1 and S2 phase domains was also investigated using Brewster angle microscopy. Domains of the S1 phase were relatively small and highly branched, whereas those of the S2 phase were large and circular. The difference in domain morphology was explained by the competition of the domain line tension and electrostatic dipole interactions between surfactant molecules in the domains.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35057203</pmid><doi>10.3390/ma15020485</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-01, Vol.15 (2), p.485
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781769
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alkanes
Aqueous solutions
Bilayers
Brewster angle
Cetyltrimethylammonium bromide
Dipole interactions
Dodecyltrimethylammonium bromide
Domains
Ellipsometry
Hexadecane
Hydrocarbons
Lipids
Membranes
Microscopy
Monolayers
Morphology
Nucleation
Phase diagrams
Phase modulation
Phase transitions
Resistance thermometers
Surfactants
Tetradecane
Wetting
title Nucleation of Surfactant-Alkane Mixed Solid Monolayer and Bilayer Domains at the Air-Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleation%20of%20Surfactant-Alkane%20Mixed%20Solid%20Monolayer%20and%20Bilayer%20Domains%20at%20the%20Air-Water%20Interface&rft.jtitle=Materials&rft.au=Matsubara,%20Hiroki&rft.date=2022-01-09&rft.volume=15&rft.issue=2&rft.spage=485&rft.pages=485-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15020485&rft_dat=%3Cproquest_pubme%3E2621342524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621342524&rft_id=info:pmid/35057203&rfr_iscdi=true