Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning

Abstract Background Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis. Method Baseline clinical data from the Athens First Episode Res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Schizophrenia bulletin 2022-01, Vol.48 (1), p.122-133
Hauptverfasser: Soldatos, Rigas F, Cearns, Micah, Nielsen, Mette Ø, Kollias, Costas, Xenaki, Lida-Alkisti, Stefanatou, Pentagiotissa, Ralli, Irene, Dimitrakopoulos, Stefanos, Hatzimanolis, Alex, Kosteletos, Ioannis, Vlachos, Ilias I, Selakovic, Mirjana, Foteli, Stefania, Nianiakas, Nikolaos, Mantonakis, Leonidas, Triantafyllou, Theoni F, Ntigridaki, Aggeliki, Ermiliou, Vanessa, Voulgaraki, Marina, Psarra, Evaggelia, Sørensen, Mikkel E, Bojesen, Kirsten B, Tangmose, Karen, Sigvard, Anne M, Ambrosen, Karen S, Meritt, Toni, Syeda, Warda, Glenthøj, Birte Y, Koutsouleris, Nikolaos, Pantelis, Christos, Ebdrup, Bjørn H, Stefanis, Nikos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 122
container_title Schizophrenia bulletin
container_volume 48
creator Soldatos, Rigas F
Cearns, Micah
Nielsen, Mette Ø
Kollias, Costas
Xenaki, Lida-Alkisti
Stefanatou, Pentagiotissa
Ralli, Irene
Dimitrakopoulos, Stefanos
Hatzimanolis, Alex
Kosteletos, Ioannis
Vlachos, Ilias I
Selakovic, Mirjana
Foteli, Stefania
Nianiakas, Nikolaos
Mantonakis, Leonidas
Triantafyllou, Theoni F
Ntigridaki, Aggeliki
Ermiliou, Vanessa
Voulgaraki, Marina
Psarra, Evaggelia
Sørensen, Mikkel E
Bojesen, Kirsten B
Tangmose, Karen
Sigvard, Anne M
Ambrosen, Karen S
Meritt, Toni
Syeda, Warda
Glenthøj, Birte Y
Koutsouleris, Nikolaos
Pantelis, Christos
Ebdrup, Bjørn H
Stefanis, Nikos
description Abstract Background Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis. Method Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. Results Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P < .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P < .0001), demonstrating reliability. Conclusions Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians’ assessment should be undertaken to evaluate the possible utility as a routine clinical tool.
doi_str_mv 10.1093/schbul/sbab107
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/schbul/sbab107</oup_id><sourcerecordid>2574406110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-10be7b84d30f0804ee41b7288e32c24b9833e4197e39281b878d96c91c39e8ed3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyhH5CIe0duzEzgUJVVuotKirfpwt25ntGiVx8CRUq_55vNqlghMXW5p55vHILyHvOTvjrBHn6Ldu7s7RWceZekEWXMmq4Irxl2TBKl0XqubyhLxB_MEYl01dviYnQlai0owtyNM6QRv8FOJA44Yubep29HbXj1Ps6Q30AXHfCgO9e4z0amhhhHwME721_dgB7qcuQ8KpWI4BYwt0jTu_jRiQru0UMor0HsPwQL9bvw0D0BXYNOTCW_JqYzuEd8f7lNxfLu8uvhWr669XF19WhZelnArOHCinZSvYhmkmASR3qtQaROlL6RotRC41CkRTau600m1T-4Z70YCGVpySzwfvOLseWp9XSrYzYwq9TTsTbTD_doawNQ_xl8kmLniZBR-PghR_zoCTyf_ioevsAHFGU1ZKSlZzzjJ6dkB9iogJNs_PcGb2iZlDYuaYWB748Pdyz_ifiDLw6QDEefyf7Dda8KTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574406110</pqid></control><display><type>article</type><title>Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Soldatos, Rigas F ; Cearns, Micah ; Nielsen, Mette Ø ; Kollias, Costas ; Xenaki, Lida-Alkisti ; Stefanatou, Pentagiotissa ; Ralli, Irene ; Dimitrakopoulos, Stefanos ; Hatzimanolis, Alex ; Kosteletos, Ioannis ; Vlachos, Ilias I ; Selakovic, Mirjana ; Foteli, Stefania ; Nianiakas, Nikolaos ; Mantonakis, Leonidas ; Triantafyllou, Theoni F ; Ntigridaki, Aggeliki ; Ermiliou, Vanessa ; Voulgaraki, Marina ; Psarra, Evaggelia ; Sørensen, Mikkel E ; Bojesen, Kirsten B ; Tangmose, Karen ; Sigvard, Anne M ; Ambrosen, Karen S ; Meritt, Toni ; Syeda, Warda ; Glenthøj, Birte Y ; Koutsouleris, Nikolaos ; Pantelis, Christos ; Ebdrup, Bjørn H ; Stefanis, Nikos</creator><creatorcontrib>Soldatos, Rigas F ; Cearns, Micah ; Nielsen, Mette Ø ; Kollias, Costas ; Xenaki, Lida-Alkisti ; Stefanatou, Pentagiotissa ; Ralli, Irene ; Dimitrakopoulos, Stefanos ; Hatzimanolis, Alex ; Kosteletos, Ioannis ; Vlachos, Ilias I ; Selakovic, Mirjana ; Foteli, Stefania ; Nianiakas, Nikolaos ; Mantonakis, Leonidas ; Triantafyllou, Theoni F ; Ntigridaki, Aggeliki ; Ermiliou, Vanessa ; Voulgaraki, Marina ; Psarra, Evaggelia ; Sørensen, Mikkel E ; Bojesen, Kirsten B ; Tangmose, Karen ; Sigvard, Anne M ; Ambrosen, Karen S ; Meritt, Toni ; Syeda, Warda ; Glenthøj, Birte Y ; Koutsouleris, Nikolaos ; Pantelis, Christos ; Ebdrup, Bjørn H ; Stefanis, Nikos</creatorcontrib><description>Abstract Background Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis. Method Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. Results Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P &lt; .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P &lt; .0001), demonstrating reliability. Conclusions Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians’ assessment should be undertaken to evaluate the possible utility as a routine clinical tool.</description><identifier>ISSN: 0586-7614</identifier><identifier>EISSN: 1745-1701</identifier><identifier>DOI: 10.1093/schbul/sbab107</identifier><identifier>PMID: 34535800</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Adolescent ; Adult ; Cohort Studies ; Female ; Humans ; Male ; Models, Statistical ; Outcome Assessment, Health Care - methods ; Prognosis ; Psychotic Disorders - diagnosis ; Psychotic Disorders - physiopathology ; Psychotic Disorders - therapy ; Regular ; Remission Induction ; Remission, Spontaneous ; Schizophrenia - diagnosis ; Schizophrenia - physiopathology ; Schizophrenia - therapy ; Support Vector Machine ; Young Adult</subject><ispartof>Schizophrenia bulletin, 2022-01, Vol.48 (1), p.122-133</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-10be7b84d30f0804ee41b7288e32c24b9833e4197e39281b878d96c91c39e8ed3</citedby><cites>FETCH-LOGICAL-c424t-10be7b84d30f0804ee41b7288e32c24b9833e4197e39281b878d96c91c39e8ed3</cites><orcidid>0000-0001-8337-5366 ; 0000-0002-6623-7225 ; 0000-0001-9044-7081 ; 0000-0002-9565-0238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781312/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781312/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1585,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34535800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soldatos, Rigas F</creatorcontrib><creatorcontrib>Cearns, Micah</creatorcontrib><creatorcontrib>Nielsen, Mette Ø</creatorcontrib><creatorcontrib>Kollias, Costas</creatorcontrib><creatorcontrib>Xenaki, Lida-Alkisti</creatorcontrib><creatorcontrib>Stefanatou, Pentagiotissa</creatorcontrib><creatorcontrib>Ralli, Irene</creatorcontrib><creatorcontrib>Dimitrakopoulos, Stefanos</creatorcontrib><creatorcontrib>Hatzimanolis, Alex</creatorcontrib><creatorcontrib>Kosteletos, Ioannis</creatorcontrib><creatorcontrib>Vlachos, Ilias I</creatorcontrib><creatorcontrib>Selakovic, Mirjana</creatorcontrib><creatorcontrib>Foteli, Stefania</creatorcontrib><creatorcontrib>Nianiakas, Nikolaos</creatorcontrib><creatorcontrib>Mantonakis, Leonidas</creatorcontrib><creatorcontrib>Triantafyllou, Theoni F</creatorcontrib><creatorcontrib>Ntigridaki, Aggeliki</creatorcontrib><creatorcontrib>Ermiliou, Vanessa</creatorcontrib><creatorcontrib>Voulgaraki, Marina</creatorcontrib><creatorcontrib>Psarra, Evaggelia</creatorcontrib><creatorcontrib>Sørensen, Mikkel E</creatorcontrib><creatorcontrib>Bojesen, Kirsten B</creatorcontrib><creatorcontrib>Tangmose, Karen</creatorcontrib><creatorcontrib>Sigvard, Anne M</creatorcontrib><creatorcontrib>Ambrosen, Karen S</creatorcontrib><creatorcontrib>Meritt, Toni</creatorcontrib><creatorcontrib>Syeda, Warda</creatorcontrib><creatorcontrib>Glenthøj, Birte Y</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Pantelis, Christos</creatorcontrib><creatorcontrib>Ebdrup, Bjørn H</creatorcontrib><creatorcontrib>Stefanis, Nikos</creatorcontrib><title>Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning</title><title>Schizophrenia bulletin</title><addtitle>Schizophr Bull</addtitle><description>Abstract Background Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis. Method Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. Results Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P &lt; .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P &lt; .0001), demonstrating reliability. Conclusions Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians’ assessment should be undertaken to evaluate the possible utility as a routine clinical tool.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Cohort Studies</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Outcome Assessment, Health Care - methods</subject><subject>Prognosis</subject><subject>Psychotic Disorders - diagnosis</subject><subject>Psychotic Disorders - physiopathology</subject><subject>Psychotic Disorders - therapy</subject><subject>Regular</subject><subject>Remission Induction</subject><subject>Remission, Spontaneous</subject><subject>Schizophrenia - diagnosis</subject><subject>Schizophrenia - physiopathology</subject><subject>Schizophrenia - therapy</subject><subject>Support Vector Machine</subject><subject>Young Adult</subject><issn>0586-7614</issn><issn>1745-1701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhyhH5CIe0duzEzgUJVVuotKirfpwt25ntGiVx8CRUq_55vNqlghMXW5p55vHILyHvOTvjrBHn6Ldu7s7RWceZekEWXMmq4Irxl2TBKl0XqubyhLxB_MEYl01dviYnQlai0owtyNM6QRv8FOJA44Yubep29HbXj1Ps6Q30AXHfCgO9e4z0amhhhHwME721_dgB7qcuQ8KpWI4BYwt0jTu_jRiQru0UMor0HsPwQL9bvw0D0BXYNOTCW_JqYzuEd8f7lNxfLu8uvhWr669XF19WhZelnArOHCinZSvYhmkmASR3qtQaROlL6RotRC41CkRTau600m1T-4Z70YCGVpySzwfvOLseWp9XSrYzYwq9TTsTbTD_doawNQ_xl8kmLniZBR-PghR_zoCTyf_ioevsAHFGU1ZKSlZzzjJ6dkB9iogJNs_PcGb2iZlDYuaYWB748Pdyz_ifiDLw6QDEefyf7Dda8KTM</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Soldatos, Rigas F</creator><creator>Cearns, Micah</creator><creator>Nielsen, Mette Ø</creator><creator>Kollias, Costas</creator><creator>Xenaki, Lida-Alkisti</creator><creator>Stefanatou, Pentagiotissa</creator><creator>Ralli, Irene</creator><creator>Dimitrakopoulos, Stefanos</creator><creator>Hatzimanolis, Alex</creator><creator>Kosteletos, Ioannis</creator><creator>Vlachos, Ilias I</creator><creator>Selakovic, Mirjana</creator><creator>Foteli, Stefania</creator><creator>Nianiakas, Nikolaos</creator><creator>Mantonakis, Leonidas</creator><creator>Triantafyllou, Theoni F</creator><creator>Ntigridaki, Aggeliki</creator><creator>Ermiliou, Vanessa</creator><creator>Voulgaraki, Marina</creator><creator>Psarra, Evaggelia</creator><creator>Sørensen, Mikkel E</creator><creator>Bojesen, Kirsten B</creator><creator>Tangmose, Karen</creator><creator>Sigvard, Anne M</creator><creator>Ambrosen, Karen S</creator><creator>Meritt, Toni</creator><creator>Syeda, Warda</creator><creator>Glenthøj, Birte Y</creator><creator>Koutsouleris, Nikolaos</creator><creator>Pantelis, Christos</creator><creator>Ebdrup, Bjørn H</creator><creator>Stefanis, Nikos</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8337-5366</orcidid><orcidid>https://orcid.org/0000-0002-6623-7225</orcidid><orcidid>https://orcid.org/0000-0001-9044-7081</orcidid><orcidid>https://orcid.org/0000-0002-9565-0238</orcidid></search><sort><creationdate>20220121</creationdate><title>Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning</title><author>Soldatos, Rigas F ; Cearns, Micah ; Nielsen, Mette Ø ; Kollias, Costas ; Xenaki, Lida-Alkisti ; Stefanatou, Pentagiotissa ; Ralli, Irene ; Dimitrakopoulos, Stefanos ; Hatzimanolis, Alex ; Kosteletos, Ioannis ; Vlachos, Ilias I ; Selakovic, Mirjana ; Foteli, Stefania ; Nianiakas, Nikolaos ; Mantonakis, Leonidas ; Triantafyllou, Theoni F ; Ntigridaki, Aggeliki ; Ermiliou, Vanessa ; Voulgaraki, Marina ; Psarra, Evaggelia ; Sørensen, Mikkel E ; Bojesen, Kirsten B ; Tangmose, Karen ; Sigvard, Anne M ; Ambrosen, Karen S ; Meritt, Toni ; Syeda, Warda ; Glenthøj, Birte Y ; Koutsouleris, Nikolaos ; Pantelis, Christos ; Ebdrup, Bjørn H ; Stefanis, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-10be7b84d30f0804ee41b7288e32c24b9833e4197e39281b878d96c91c39e8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Cohort Studies</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Outcome Assessment, Health Care - methods</topic><topic>Prognosis</topic><topic>Psychotic Disorders - diagnosis</topic><topic>Psychotic Disorders - physiopathology</topic><topic>Psychotic Disorders - therapy</topic><topic>Regular</topic><topic>Remission Induction</topic><topic>Remission, Spontaneous</topic><topic>Schizophrenia - diagnosis</topic><topic>Schizophrenia - physiopathology</topic><topic>Schizophrenia - therapy</topic><topic>Support Vector Machine</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soldatos, Rigas F</creatorcontrib><creatorcontrib>Cearns, Micah</creatorcontrib><creatorcontrib>Nielsen, Mette Ø</creatorcontrib><creatorcontrib>Kollias, Costas</creatorcontrib><creatorcontrib>Xenaki, Lida-Alkisti</creatorcontrib><creatorcontrib>Stefanatou, Pentagiotissa</creatorcontrib><creatorcontrib>Ralli, Irene</creatorcontrib><creatorcontrib>Dimitrakopoulos, Stefanos</creatorcontrib><creatorcontrib>Hatzimanolis, Alex</creatorcontrib><creatorcontrib>Kosteletos, Ioannis</creatorcontrib><creatorcontrib>Vlachos, Ilias I</creatorcontrib><creatorcontrib>Selakovic, Mirjana</creatorcontrib><creatorcontrib>Foteli, Stefania</creatorcontrib><creatorcontrib>Nianiakas, Nikolaos</creatorcontrib><creatorcontrib>Mantonakis, Leonidas</creatorcontrib><creatorcontrib>Triantafyllou, Theoni F</creatorcontrib><creatorcontrib>Ntigridaki, Aggeliki</creatorcontrib><creatorcontrib>Ermiliou, Vanessa</creatorcontrib><creatorcontrib>Voulgaraki, Marina</creatorcontrib><creatorcontrib>Psarra, Evaggelia</creatorcontrib><creatorcontrib>Sørensen, Mikkel E</creatorcontrib><creatorcontrib>Bojesen, Kirsten B</creatorcontrib><creatorcontrib>Tangmose, Karen</creatorcontrib><creatorcontrib>Sigvard, Anne M</creatorcontrib><creatorcontrib>Ambrosen, Karen S</creatorcontrib><creatorcontrib>Meritt, Toni</creatorcontrib><creatorcontrib>Syeda, Warda</creatorcontrib><creatorcontrib>Glenthøj, Birte Y</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Pantelis, Christos</creatorcontrib><creatorcontrib>Ebdrup, Bjørn H</creatorcontrib><creatorcontrib>Stefanis, Nikos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Schizophrenia bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soldatos, Rigas F</au><au>Cearns, Micah</au><au>Nielsen, Mette Ø</au><au>Kollias, Costas</au><au>Xenaki, Lida-Alkisti</au><au>Stefanatou, Pentagiotissa</au><au>Ralli, Irene</au><au>Dimitrakopoulos, Stefanos</au><au>Hatzimanolis, Alex</au><au>Kosteletos, Ioannis</au><au>Vlachos, Ilias I</au><au>Selakovic, Mirjana</au><au>Foteli, Stefania</au><au>Nianiakas, Nikolaos</au><au>Mantonakis, Leonidas</au><au>Triantafyllou, Theoni F</au><au>Ntigridaki, Aggeliki</au><au>Ermiliou, Vanessa</au><au>Voulgaraki, Marina</au><au>Psarra, Evaggelia</au><au>Sørensen, Mikkel E</au><au>Bojesen, Kirsten B</au><au>Tangmose, Karen</au><au>Sigvard, Anne M</au><au>Ambrosen, Karen S</au><au>Meritt, Toni</au><au>Syeda, Warda</au><au>Glenthøj, Birte Y</au><au>Koutsouleris, Nikolaos</au><au>Pantelis, Christos</au><au>Ebdrup, Bjørn H</au><au>Stefanis, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning</atitle><jtitle>Schizophrenia bulletin</jtitle><addtitle>Schizophr Bull</addtitle><date>2022-01-21</date><risdate>2022</risdate><volume>48</volume><issue>1</issue><spage>122</spage><epage>133</epage><pages>122-133</pages><issn>0586-7614</issn><eissn>1745-1701</eissn><abstract>Abstract Background Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis. Method Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. Results Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P &lt; .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P &lt; .0001), demonstrating reliability. Conclusions Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians’ assessment should be undertaken to evaluate the possible utility as a routine clinical tool.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>34535800</pmid><doi>10.1093/schbul/sbab107</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8337-5366</orcidid><orcidid>https://orcid.org/0000-0002-6623-7225</orcidid><orcidid>https://orcid.org/0000-0001-9044-7081</orcidid><orcidid>https://orcid.org/0000-0002-9565-0238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0586-7614
ispartof Schizophrenia bulletin, 2022-01, Vol.48 (1), p.122-133
issn 0586-7614
1745-1701
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781312
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central; Alma/SFX Local Collection
subjects Adolescent
Adult
Cohort Studies
Female
Humans
Male
Models, Statistical
Outcome Assessment, Health Care - methods
Prognosis
Psychotic Disorders - diagnosis
Psychotic Disorders - physiopathology
Psychotic Disorders - therapy
Regular
Remission Induction
Remission, Spontaneous
Schizophrenia - diagnosis
Schizophrenia - physiopathology
Schizophrenia - therapy
Support Vector Machine
Young Adult
title Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Early%20Symptom%20Remission%20in%20Two%20Independent%20Samples%20of%20First-Episode%20Psychosis%20Patients%20Using%20Machine%20Learning&rft.jtitle=Schizophrenia%20bulletin&rft.au=Soldatos,%20Rigas%20F&rft.date=2022-01-21&rft.volume=48&rft.issue=1&rft.spage=122&rft.epage=133&rft.pages=122-133&rft.issn=0586-7614&rft.eissn=1745-1701&rft_id=info:doi/10.1093/schbul/sbab107&rft_dat=%3Cproquest_pubme%3E2574406110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574406110&rft_id=info:pmid/34535800&rft_oup_id=10.1093/schbul/sbab107&rfr_iscdi=true