Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting

Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-01, Vol.14 (2), p.319
Hauptverfasser: Chung, Johnson H Y, Sayyar, Sepidar, Wallace, Gordon G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 319
container_title Polymers
container_volume 14
creator Chung, Johnson H Y
Sayyar, Sepidar
Wallace, Gordon G
description Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.
doi_str_mv 10.3390/polym14020319
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621358393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-77094a573f7e143d2d92adfbbc850f60f953eb104ca453439565805a7e7e0b2d3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoKurRqxS8eKkmmaRpL4LIrgorCurVkOZjrWSbmnQV_72RVVFDIIF5eGaGF6F9go8BGnwyBP--IAxTDKRZQ9sUCygZVHj9138L7aX0jPNhvKqI2ERbwDFngrJt9DhxzuqxCK64iGp4sr0tzozpxi70Rb63uYNWQwxe6THk4p1WzgVvUjFVbey0Gq0pHlLXz4tr68dy4rMuhreYFf18F2045ZPd-3p30MN0cn9-Wc5uLq7Oz2alZoSPpRC4YYoLcMISBoaahirj2lbXHLsKu4aDbQlmWjEODBpe8RpzJaywuKUGdtDpyjss24U12vZjVF4OsVuo-C6D6uTfSt89yXl4lbWocQMiC46-BDG8LG0a5aJL2nqvehuWSdKKUiqYqGlGD_-hz2EZ-7zeJ0WA19BApsoVpWNIKVr3MwzB8jM8-Se8zB_83uCH_o4KPgD2PpZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621358393</pqid></control><display><type>article</type><title>Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Chung, Johnson H Y ; Sayyar, Sepidar ; Wallace, Gordon G</creator><creatorcontrib>Chung, Johnson H Y ; Sayyar, Sepidar ; Wallace, Gordon G</creatorcontrib><description>Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14020319</identifier><identifier>PMID: 35054724</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Degradation ; Enzymes ; Extrusion ; Graphene ; Mechanical properties ; Polycaprolactone ; Polymers ; Scaffolds ; Substrates ; Tensile strength ; Tissue engineering</subject><ispartof>Polymers, 2022-01, Vol.14 (2), p.319</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-77094a573f7e143d2d92adfbbc850f60f953eb104ca453439565805a7e7e0b2d3</citedby><cites>FETCH-LOGICAL-c415t-77094a573f7e143d2d92adfbbc850f60f953eb104ca453439565805a7e7e0b2d3</cites><orcidid>0000-0002-0381-7273 ; 0000-0003-2449-3607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35054724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Johnson H Y</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><title>Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.</description><subject>3-D printers</subject><subject>Degradation</subject><subject>Enzymes</subject><subject>Extrusion</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Polycaprolactone</subject><subject>Polymers</subject><subject>Scaffolds</subject><subject>Substrates</subject><subject>Tensile strength</subject><subject>Tissue engineering</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LxDAQhoMoKurRqxS8eKkmmaRpL4LIrgorCurVkOZjrWSbmnQV_72RVVFDIIF5eGaGF6F9go8BGnwyBP--IAxTDKRZQ9sUCygZVHj9138L7aX0jPNhvKqI2ERbwDFngrJt9DhxzuqxCK64iGp4sr0tzozpxi70Rb63uYNWQwxe6THk4p1WzgVvUjFVbey0Gq0pHlLXz4tr68dy4rMuhreYFf18F2045ZPd-3p30MN0cn9-Wc5uLq7Oz2alZoSPpRC4YYoLcMISBoaahirj2lbXHLsKu4aDbQlmWjEODBpe8RpzJaywuKUGdtDpyjss24U12vZjVF4OsVuo-C6D6uTfSt89yXl4lbWocQMiC46-BDG8LG0a5aJL2nqvehuWSdKKUiqYqGlGD_-hz2EZ-7zeJ0WA19BApsoVpWNIKVr3MwzB8jM8-Se8zB_83uCH_o4KPgD2PpZs</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Chung, Johnson H Y</creator><creator>Sayyar, Sepidar</creator><creator>Wallace, Gordon G</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0381-7273</orcidid><orcidid>https://orcid.org/0000-0003-2449-3607</orcidid></search><sort><creationdate>20220113</creationdate><title>Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting</title><author>Chung, Johnson H Y ; Sayyar, Sepidar ; Wallace, Gordon G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-77094a573f7e143d2d92adfbbc850f60f953eb104ca453439565805a7e7e0b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Degradation</topic><topic>Enzymes</topic><topic>Extrusion</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Polycaprolactone</topic><topic>Polymers</topic><topic>Scaffolds</topic><topic>Substrates</topic><topic>Tensile strength</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Johnson H Y</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Johnson H Y</au><au>Sayyar, Sepidar</au><au>Wallace, Gordon G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-01-13</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>319</spage><pages>319-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35054724</pmid><doi>10.3390/polym14020319</doi><orcidid>https://orcid.org/0000-0002-0381-7273</orcidid><orcidid>https://orcid.org/0000-0003-2449-3607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-01, Vol.14 (2), p.319
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780937
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects 3-D printers
Degradation
Enzymes
Extrusion
Graphene
Mechanical properties
Polycaprolactone
Polymers
Scaffolds
Substrates
Tensile strength
Tissue engineering
title Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Graphene%20Addition%20on%20Polycaprolactone%20Scaffolds%20Fabricated%20Using%20Melt-Electrowriting&rft.jtitle=Polymers&rft.au=Chung,%20Johnson%20H%20Y&rft.date=2022-01-13&rft.volume=14&rft.issue=2&rft.spage=319&rft.pages=319-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14020319&rft_dat=%3Cproquest_pubme%3E2621358393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621358393&rft_id=info:pmid/35054724&rfr_iscdi=true