Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet
In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation beha...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-01, Vol.14 (2), p.323 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 323 |
container_title | Polymers |
container_volume | 14 |
creator | Jang, Ji-Un Nam, Hae Eun So, Soon Oh Lee, Hyeseong Kim, Geon Su Kim, Seong Yun Kim, Seong Hun |
description | In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties. |
doi_str_mv | 10.3390/polym14020323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621379655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EolXpkSuyxIVLwF-xkwsSrKAgraAS5Ww5zoS4SuxgOwvbX18v_VDLXGakeeadGb0IvaTkLectebeEaT9TQRjhjD9Bx4woXgkuydMH9RE6TemSlBC1lFQ9R0e8JrVQrD1Gfy9GiLOZ8DlEGyaTXfD4I4xm50LEzuO7_ib4frXZ7Vze4zDg88NqiPib8cGGeQnJZcB_XB7x1mSIZeSHu4IDehbNMoKHf-xSdsAE-QV6NpgpweltPkE_P3-62Hyptt_Pvm4-bCsraJ0rZqkwxlrbmb5jNe0GIzinvWi7xjKqWtWA6EEMDfBGtgPrhGk7NVAlDIBs-Ql6f6O7rN0MvQWfy216iW42ca-Dcfpxx7tR_wo73aiGSEmKwJtbgRh-r5Cynl2yME3GQ1iTZpIxppQkoqCv_0Mvwxp9ee9AUa5aWdeFqm4oG0NKEYb7YyjRB1v1I1sL_-rhB_f0nYn8GvjtobI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621379655</pqid></control><display><type>article</type><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</creator><creatorcontrib>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</creatorcontrib><description>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14020323</identifier><identifier>PMID: 35054729</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Graphene ; Heat conductivity ; Heat transfer ; Nanocomposites ; Percolation ; Polymers ; Software ; Thermal conductivity ; Viscosity</subject><ispartof>Polymers, 2022-01, Vol.14 (2), p.323</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</citedby><cites>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</cites><orcidid>0000-0003-0401-6643 ; 0000-0001-9958-2896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35054729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Ji-Un</creatorcontrib><creatorcontrib>Nam, Hae Eun</creatorcontrib><creatorcontrib>So, Soon Oh</creatorcontrib><creatorcontrib>Lee, Hyeseong</creatorcontrib><creatorcontrib>Kim, Geon Su</creatorcontrib><creatorcontrib>Kim, Seong Yun</creatorcontrib><creatorcontrib>Kim, Seong Hun</creatorcontrib><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</description><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nanocomposites</subject><subject>Percolation</subject><subject>Polymers</subject><subject>Software</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EolXpkSuyxIVLwF-xkwsSrKAgraAS5Ww5zoS4SuxgOwvbX18v_VDLXGakeeadGb0IvaTkLectebeEaT9TQRjhjD9Bx4woXgkuydMH9RE6TemSlBC1lFQ9R0e8JrVQrD1Gfy9GiLOZ8DlEGyaTXfD4I4xm50LEzuO7_ib4frXZ7Vze4zDg88NqiPib8cGGeQnJZcB_XB7x1mSIZeSHu4IDehbNMoKHf-xSdsAE-QV6NpgpweltPkE_P3-62Hyptt_Pvm4-bCsraJ0rZqkwxlrbmb5jNe0GIzinvWi7xjKqWtWA6EEMDfBGtgPrhGk7NVAlDIBs-Ql6f6O7rN0MvQWfy216iW42ca-Dcfpxx7tR_wo73aiGSEmKwJtbgRh-r5Cynl2yME3GQ1iTZpIxppQkoqCv_0Mvwxp9ee9AUa5aWdeFqm4oG0NKEYb7YyjRB1v1I1sL_-rhB_f0nYn8GvjtobI</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Jang, Ji-Un</creator><creator>Nam, Hae Eun</creator><creator>So, Soon Oh</creator><creator>Lee, Hyeseong</creator><creator>Kim, Geon Su</creator><creator>Kim, Seong Yun</creator><creator>Kim, Seong Hun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0401-6643</orcidid><orcidid>https://orcid.org/0000-0001-9958-2896</orcidid></search><sort><creationdate>20220113</creationdate><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><author>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nanocomposites</topic><topic>Percolation</topic><topic>Polymers</topic><topic>Software</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Ji-Un</creatorcontrib><creatorcontrib>Nam, Hae Eun</creatorcontrib><creatorcontrib>So, Soon Oh</creatorcontrib><creatorcontrib>Lee, Hyeseong</creatorcontrib><creatorcontrib>Kim, Geon Su</creatorcontrib><creatorcontrib>Kim, Seong Yun</creatorcontrib><creatorcontrib>Kim, Seong Hun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Ji-Un</au><au>Nam, Hae Eun</au><au>So, Soon Oh</au><au>Lee, Hyeseong</au><au>Kim, Geon Su</au><au>Kim, Seong Yun</au><au>Kim, Seong Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-01-13</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>323</spage><pages>323-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35054729</pmid><doi>10.3390/polym14020323</doi><orcidid>https://orcid.org/0000-0003-0401-6643</orcidid><orcidid>https://orcid.org/0000-0001-9958-2896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-01, Vol.14 (2), p.323 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780660 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Graphene Heat conductivity Heat transfer Nanocomposites Percolation Polymers Software Thermal conductivity Viscosity |
title | Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Percolation%20Behavior%20in%20Thermal%20Conductivity%20of%20Polymer%20Nanocomposite%20with%20Lateral%20Size%20of%20Graphene%20Nanoplatelet&rft.jtitle=Polymers&rft.au=Jang,%20Ji-Un&rft.date=2022-01-13&rft.volume=14&rft.issue=2&rft.spage=323&rft.pages=323-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14020323&rft_dat=%3Cproquest_pubme%3E2621379655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621379655&rft_id=info:pmid/35054729&rfr_iscdi=true |