Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet

In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-01, Vol.14 (2), p.323
Hauptverfasser: Jang, Ji-Un, Nam, Hae Eun, So, Soon Oh, Lee, Hyeseong, Kim, Geon Su, Kim, Seong Yun, Kim, Seong Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 323
container_title Polymers
container_volume 14
creator Jang, Ji-Un
Nam, Hae Eun
So, Soon Oh
Lee, Hyeseong
Kim, Geon Su
Kim, Seong Yun
Kim, Seong Hun
description In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.
doi_str_mv 10.3390/polym14020323
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621379655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EolXpkSuyxIVLwF-xkwsSrKAgraAS5Ww5zoS4SuxgOwvbX18v_VDLXGakeeadGb0IvaTkLectebeEaT9TQRjhjD9Bx4woXgkuydMH9RE6TemSlBC1lFQ9R0e8JrVQrD1Gfy9GiLOZ8DlEGyaTXfD4I4xm50LEzuO7_ib4frXZ7Vze4zDg88NqiPib8cGGeQnJZcB_XB7x1mSIZeSHu4IDehbNMoKHf-xSdsAE-QV6NpgpweltPkE_P3-62Hyptt_Pvm4-bCsraJ0rZqkwxlrbmb5jNe0GIzinvWi7xjKqWtWA6EEMDfBGtgPrhGk7NVAlDIBs-Ql6f6O7rN0MvQWfy216iW42ca-Dcfpxx7tR_wo73aiGSEmKwJtbgRh-r5Cynl2yME3GQ1iTZpIxppQkoqCv_0Mvwxp9ee9AUa5aWdeFqm4oG0NKEYb7YyjRB1v1I1sL_-rhB_f0nYn8GvjtobI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621379655</pqid></control><display><type>article</type><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</creator><creatorcontrib>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</creatorcontrib><description>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14020323</identifier><identifier>PMID: 35054729</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Graphene ; Heat conductivity ; Heat transfer ; Nanocomposites ; Percolation ; Polymers ; Software ; Thermal conductivity ; Viscosity</subject><ispartof>Polymers, 2022-01, Vol.14 (2), p.323</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</citedby><cites>FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</cites><orcidid>0000-0003-0401-6643 ; 0000-0001-9958-2896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35054729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Ji-Un</creatorcontrib><creatorcontrib>Nam, Hae Eun</creatorcontrib><creatorcontrib>So, Soon Oh</creatorcontrib><creatorcontrib>Lee, Hyeseong</creatorcontrib><creatorcontrib>Kim, Geon Su</creatorcontrib><creatorcontrib>Kim, Seong Yun</creatorcontrib><creatorcontrib>Kim, Seong Hun</creatorcontrib><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</description><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nanocomposites</subject><subject>Percolation</subject><subject>Polymers</subject><subject>Software</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EolXpkSuyxIVLwF-xkwsSrKAgraAS5Ww5zoS4SuxgOwvbX18v_VDLXGakeeadGb0IvaTkLectebeEaT9TQRjhjD9Bx4woXgkuydMH9RE6TemSlBC1lFQ9R0e8JrVQrD1Gfy9GiLOZ8DlEGyaTXfD4I4xm50LEzuO7_ib4frXZ7Vze4zDg88NqiPib8cGGeQnJZcB_XB7x1mSIZeSHu4IDehbNMoKHf-xSdsAE-QV6NpgpweltPkE_P3-62Hyptt_Pvm4-bCsraJ0rZqkwxlrbmb5jNe0GIzinvWi7xjKqWtWA6EEMDfBGtgPrhGk7NVAlDIBs-Ql6f6O7rN0MvQWfy216iW42ca-Dcfpxx7tR_wo73aiGSEmKwJtbgRh-r5Cynl2yME3GQ1iTZpIxppQkoqCv_0Mvwxp9ee9AUa5aWdeFqm4oG0NKEYb7YyjRB1v1I1sL_-rhB_f0nYn8GvjtobI</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Jang, Ji-Un</creator><creator>Nam, Hae Eun</creator><creator>So, Soon Oh</creator><creator>Lee, Hyeseong</creator><creator>Kim, Geon Su</creator><creator>Kim, Seong Yun</creator><creator>Kim, Seong Hun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0401-6643</orcidid><orcidid>https://orcid.org/0000-0001-9958-2896</orcidid></search><sort><creationdate>20220113</creationdate><title>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</title><author>Jang, Ji-Un ; Nam, Hae Eun ; So, Soon Oh ; Lee, Hyeseong ; Kim, Geon Su ; Kim, Seong Yun ; Kim, Seong Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2c14aacccbadb251bfa4331d49b8c217978e4de4f8e3869f2b4a9b7f174aee693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nanocomposites</topic><topic>Percolation</topic><topic>Polymers</topic><topic>Software</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Ji-Un</creatorcontrib><creatorcontrib>Nam, Hae Eun</creatorcontrib><creatorcontrib>So, Soon Oh</creatorcontrib><creatorcontrib>Lee, Hyeseong</creatorcontrib><creatorcontrib>Kim, Geon Su</creatorcontrib><creatorcontrib>Kim, Seong Yun</creatorcontrib><creatorcontrib>Kim, Seong Hun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Ji-Un</au><au>Nam, Hae Eun</au><au>So, Soon Oh</au><au>Lee, Hyeseong</au><au>Kim, Geon Su</au><au>Kim, Seong Yun</au><au>Kim, Seong Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-01-13</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>323</spage><pages>323-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan's model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35054729</pmid><doi>10.3390/polym14020323</doi><orcidid>https://orcid.org/0000-0003-0401-6643</orcidid><orcidid>https://orcid.org/0000-0001-9958-2896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-01, Vol.14 (2), p.323
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780660
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Graphene
Heat conductivity
Heat transfer
Nanocomposites
Percolation
Polymers
Software
Thermal conductivity
Viscosity
title Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Percolation%20Behavior%20in%20Thermal%20Conductivity%20of%20Polymer%20Nanocomposite%20with%20Lateral%20Size%20of%20Graphene%20Nanoplatelet&rft.jtitle=Polymers&rft.au=Jang,%20Ji-Un&rft.date=2022-01-13&rft.volume=14&rft.issue=2&rft.spage=323&rft.pages=323-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14020323&rft_dat=%3Cproquest_pubme%3E2621379655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621379655&rft_id=info:pmid/35054729&rfr_iscdi=true