Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure

One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-01, Vol.23 (2), p.1009
Hauptverfasser: Templeton, Evelyn M, Lassé, Moritz, Kleffmann, Torsten, Ellmers, Leigh J, Palmer, Suetonia C, Davidson, Trent, Scott, Nicola J A, Pickering, John W, Charles, Christopher J, Endre, Zoltan H, Cameron, Vicky A, Richards, A Mark, Rademaker, Miriam T, Pilbrow, Anna P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1009
container_title International journal of molecular sciences
container_volume 23
creator Templeton, Evelyn M
Lassé, Moritz
Kleffmann, Torsten
Ellmers, Leigh J
Palmer, Suetonia C
Davidson, Trent
Scott, Nicola J A
Pickering, John W
Charles, Christopher J
Endre, Zoltan H
Cameron, Vicky A
Richards, A Mark
Rademaker, Miriam T
Pilbrow, Anna P
description One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep ( = 5), sheep with established rapid-pacing-induced ADHF ( = 8), and sheep after ~4 weeks recovery from ADHF ( = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.
doi_str_mv 10.3390/ijms23021009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622277543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-e163a965c071ba202cc8b3a9fbb9019e1dcd5109511270796ba4b00622e17a723</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa0KVD7aW8_IUi8cCIzteB1fKkUBSgSoPbRny-udpQ67drB3K-W_xygUpZzGmvnNGz89Qr4wOBdCw4Vf9ZkL4AxAfyCHbMr5BKBSezvvA3KU8wqACy71R3IgJEjJtDwkdtlgGHy78eGBLmxofGMHpD9THNAHem_TI6ZMY0vnbiyDW98E3NBlWI1pQwuxbV-ii_0aQy7LDb1BmwZ6bX03JvxE9lvbZfz8Wo_J7-urX4ubyd2P78vF_G7iRKWHCbJKWF1JB4rVlgN3blaXTlvXGphG1rhGMtCSMa5A6aq207p44xyZsoqLY_Jtq7se6x4bV2wl25l18r1NGxOtN_9Pgv9jHuJfM1NqJkEXgdNXgRSfRsyD6X122HU2YByz4eUWV0pORUG_vkNXcUyh2HuhmOBcqKpQZ1vKpZhzwvbtMwzMS3ZmN7uCn-waeIP_hSWeARdWlO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621322376</pqid></control><display><type>article</type><title>Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Templeton, Evelyn M ; Lassé, Moritz ; Kleffmann, Torsten ; Ellmers, Leigh J ; Palmer, Suetonia C ; Davidson, Trent ; Scott, Nicola J A ; Pickering, John W ; Charles, Christopher J ; Endre, Zoltan H ; Cameron, Vicky A ; Richards, A Mark ; Rademaker, Miriam T ; Pilbrow, Anna P</creator><creatorcontrib>Templeton, Evelyn M ; Lassé, Moritz ; Kleffmann, Torsten ; Ellmers, Leigh J ; Palmer, Suetonia C ; Davidson, Trent ; Scott, Nicola J A ; Pickering, John W ; Charles, Christopher J ; Endre, Zoltan H ; Cameron, Vicky A ; Richards, A Mark ; Rademaker, Miriam T ; Pilbrow, Anna P</creatorcontrib><description>One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep ( = 5), sheep with established rapid-pacing-induced ADHF ( = 8), and sheep after ~4 weeks recovery from ADHF ( = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted &lt; 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted &lt; 0.01) and acute phase response (repressed during recovery from ADHF; adjusted &lt; 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23021009</identifier><identifier>PMID: 35055195</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acute Kidney Injury - blood ; Acute Kidney Injury - diagnosis ; Acute Kidney Injury - metabolism ; Acute Kidney Injury - urine ; Animals ; Biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Biomarkers - urine ; Candidates ; Congestive heart failure ; Creatinine ; Disease Models, Animal ; FDA approval ; Glycoprotein VI ; Heart failure ; Heart Failure - blood ; Heart Failure - complications ; Heart Failure - metabolism ; Heart Failure - urine ; Humans ; Inflammation ; Injury prevention ; Kidneys ; Kinases ; Mass spectrometry ; Mass spectroscopy ; Mortality ; Patients ; Physiology ; Plasma ; Platelet Membrane Glycoproteins - metabolism ; Platelet Membrane Glycoproteins - urine ; Prognosis ; Protein folding ; Proteins ; Proteomics - methods ; Renal failure ; Sheep ; Signal transduction</subject><ispartof>International journal of molecular sciences, 2022-01, Vol.23 (2), p.1009</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-e163a965c071ba202cc8b3a9fbb9019e1dcd5109511270796ba4b00622e17a723</cites><orcidid>0000-0001-5735-9549 ; 0000-0002-5767-794X ; 0000-0003-3147-683X ; 0000-0002-5685-9151 ; 0000-0001-9807-8022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778509/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778509/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35055195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Templeton, Evelyn M</creatorcontrib><creatorcontrib>Lassé, Moritz</creatorcontrib><creatorcontrib>Kleffmann, Torsten</creatorcontrib><creatorcontrib>Ellmers, Leigh J</creatorcontrib><creatorcontrib>Palmer, Suetonia C</creatorcontrib><creatorcontrib>Davidson, Trent</creatorcontrib><creatorcontrib>Scott, Nicola J A</creatorcontrib><creatorcontrib>Pickering, John W</creatorcontrib><creatorcontrib>Charles, Christopher J</creatorcontrib><creatorcontrib>Endre, Zoltan H</creatorcontrib><creatorcontrib>Cameron, Vicky A</creatorcontrib><creatorcontrib>Richards, A Mark</creatorcontrib><creatorcontrib>Rademaker, Miriam T</creatorcontrib><creatorcontrib>Pilbrow, Anna P</creatorcontrib><title>Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep ( = 5), sheep with established rapid-pacing-induced ADHF ( = 8), and sheep after ~4 weeks recovery from ADHF ( = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted &lt; 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted &lt; 0.01) and acute phase response (repressed during recovery from ADHF; adjusted &lt; 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.</description><subject>Acute Kidney Injury - blood</subject><subject>Acute Kidney Injury - diagnosis</subject><subject>Acute Kidney Injury - metabolism</subject><subject>Acute Kidney Injury - urine</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Biomarkers - urine</subject><subject>Candidates</subject><subject>Congestive heart failure</subject><subject>Creatinine</subject><subject>Disease Models, Animal</subject><subject>FDA approval</subject><subject>Glycoprotein VI</subject><subject>Heart failure</subject><subject>Heart Failure - blood</subject><subject>Heart Failure - complications</subject><subject>Heart Failure - metabolism</subject><subject>Heart Failure - urine</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Injury prevention</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mortality</subject><subject>Patients</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Platelet Membrane Glycoproteins - metabolism</subject><subject>Platelet Membrane Glycoproteins - urine</subject><subject>Prognosis</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteomics - methods</subject><subject>Renal failure</subject><subject>Sheep</subject><subject>Signal transduction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1PGzEQxa0KVD7aW8_IUi8cCIzteB1fKkUBSgSoPbRny-udpQ67drB3K-W_xygUpZzGmvnNGz89Qr4wOBdCw4Vf9ZkL4AxAfyCHbMr5BKBSezvvA3KU8wqACy71R3IgJEjJtDwkdtlgGHy78eGBLmxofGMHpD9THNAHem_TI6ZMY0vnbiyDW98E3NBlWI1pQwuxbV-ii_0aQy7LDb1BmwZ6bX03JvxE9lvbZfz8Wo_J7-urX4ubyd2P78vF_G7iRKWHCbJKWF1JB4rVlgN3blaXTlvXGphG1rhGMtCSMa5A6aq207p44xyZsoqLY_Jtq7se6x4bV2wl25l18r1NGxOtN_9Pgv9jHuJfM1NqJkEXgdNXgRSfRsyD6X122HU2YByz4eUWV0pORUG_vkNXcUyh2HuhmOBcqKpQZ1vKpZhzwvbtMwzMS3ZmN7uCn-waeIP_hSWeARdWlO8</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Templeton, Evelyn M</creator><creator>Lassé, Moritz</creator><creator>Kleffmann, Torsten</creator><creator>Ellmers, Leigh J</creator><creator>Palmer, Suetonia C</creator><creator>Davidson, Trent</creator><creator>Scott, Nicola J A</creator><creator>Pickering, John W</creator><creator>Charles, Christopher J</creator><creator>Endre, Zoltan H</creator><creator>Cameron, Vicky A</creator><creator>Richards, A Mark</creator><creator>Rademaker, Miriam T</creator><creator>Pilbrow, Anna P</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5735-9549</orcidid><orcidid>https://orcid.org/0000-0002-5767-794X</orcidid><orcidid>https://orcid.org/0000-0003-3147-683X</orcidid><orcidid>https://orcid.org/0000-0002-5685-9151</orcidid><orcidid>https://orcid.org/0000-0001-9807-8022</orcidid></search><sort><creationdate>20220117</creationdate><title>Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure</title><author>Templeton, Evelyn M ; Lassé, Moritz ; Kleffmann, Torsten ; Ellmers, Leigh J ; Palmer, Suetonia C ; Davidson, Trent ; Scott, Nicola J A ; Pickering, John W ; Charles, Christopher J ; Endre, Zoltan H ; Cameron, Vicky A ; Richards, A Mark ; Rademaker, Miriam T ; Pilbrow, Anna P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-e163a965c071ba202cc8b3a9fbb9019e1dcd5109511270796ba4b00622e17a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute Kidney Injury - blood</topic><topic>Acute Kidney Injury - diagnosis</topic><topic>Acute Kidney Injury - metabolism</topic><topic>Acute Kidney Injury - urine</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Biomarkers - urine</topic><topic>Candidates</topic><topic>Congestive heart failure</topic><topic>Creatinine</topic><topic>Disease Models, Animal</topic><topic>FDA approval</topic><topic>Glycoprotein VI</topic><topic>Heart failure</topic><topic>Heart Failure - blood</topic><topic>Heart Failure - complications</topic><topic>Heart Failure - metabolism</topic><topic>Heart Failure - urine</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Injury prevention</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mortality</topic><topic>Patients</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Platelet Membrane Glycoproteins - metabolism</topic><topic>Platelet Membrane Glycoproteins - urine</topic><topic>Prognosis</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteomics - methods</topic><topic>Renal failure</topic><topic>Sheep</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Templeton, Evelyn M</creatorcontrib><creatorcontrib>Lassé, Moritz</creatorcontrib><creatorcontrib>Kleffmann, Torsten</creatorcontrib><creatorcontrib>Ellmers, Leigh J</creatorcontrib><creatorcontrib>Palmer, Suetonia C</creatorcontrib><creatorcontrib>Davidson, Trent</creatorcontrib><creatorcontrib>Scott, Nicola J A</creatorcontrib><creatorcontrib>Pickering, John W</creatorcontrib><creatorcontrib>Charles, Christopher J</creatorcontrib><creatorcontrib>Endre, Zoltan H</creatorcontrib><creatorcontrib>Cameron, Vicky A</creatorcontrib><creatorcontrib>Richards, A Mark</creatorcontrib><creatorcontrib>Rademaker, Miriam T</creatorcontrib><creatorcontrib>Pilbrow, Anna P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Templeton, Evelyn M</au><au>Lassé, Moritz</au><au>Kleffmann, Torsten</au><au>Ellmers, Leigh J</au><au>Palmer, Suetonia C</au><au>Davidson, Trent</au><au>Scott, Nicola J A</au><au>Pickering, John W</au><au>Charles, Christopher J</au><au>Endre, Zoltan H</au><au>Cameron, Vicky A</au><au>Richards, A Mark</au><au>Rademaker, Miriam T</au><au>Pilbrow, Anna P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-01-17</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>1009</spage><pages>1009-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep ( = 5), sheep with established rapid-pacing-induced ADHF ( = 8), and sheep after ~4 weeks recovery from ADHF ( = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted &lt; 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted &lt; 0.01) and acute phase response (repressed during recovery from ADHF; adjusted &lt; 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35055195</pmid><doi>10.3390/ijms23021009</doi><orcidid>https://orcid.org/0000-0001-5735-9549</orcidid><orcidid>https://orcid.org/0000-0002-5767-794X</orcidid><orcidid>https://orcid.org/0000-0003-3147-683X</orcidid><orcidid>https://orcid.org/0000-0002-5685-9151</orcidid><orcidid>https://orcid.org/0000-0001-9807-8022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-01, Vol.23 (2), p.1009
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778509
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acute Kidney Injury - blood
Acute Kidney Injury - diagnosis
Acute Kidney Injury - metabolism
Acute Kidney Injury - urine
Animals
Biomarkers
Biomarkers - blood
Biomarkers - metabolism
Biomarkers - urine
Candidates
Congestive heart failure
Creatinine
Disease Models, Animal
FDA approval
Glycoprotein VI
Heart failure
Heart Failure - blood
Heart Failure - complications
Heart Failure - metabolism
Heart Failure - urine
Humans
Inflammation
Injury prevention
Kidneys
Kinases
Mass spectrometry
Mass spectroscopy
Mortality
Patients
Physiology
Plasma
Platelet Membrane Glycoproteins - metabolism
Platelet Membrane Glycoproteins - urine
Prognosis
Protein folding
Proteins
Proteomics - methods
Renal failure
Sheep
Signal transduction
title Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Candidate%20Protein%20Markers%20of%20Acute%20Kidney%20Injury%20in%20Acute%20Decompensated%20Heart%20Failure&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Templeton,%20Evelyn%20M&rft.date=2022-01-17&rft.volume=23&rft.issue=2&rft.spage=1009&rft.pages=1009-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23021009&rft_dat=%3Cproquest_pubme%3E2622277543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621322376&rft_id=info:pmid/35055195&rfr_iscdi=true