Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source

Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (2), p.466
Hauptverfasser: Chang, Kaixin, Zhu, Qianjin, Qi, Liyan, Guo, Mingwei, Gao, Woming, Gao, Qinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 466
container_title Materials
container_volume 15
creator Chang, Kaixin
Zhu, Qianjin
Qi, Liyan
Guo, Mingwei
Gao, Woming
Gao, Qinwei
description Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe ions, for Fe ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe ions displays an obvious linear relationship to Fe concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe ions.
doi_str_mv 10.3390/ma15020466
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621344521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f8d3e2b3cfccd71a2d73dfa7bdcff80ecf2fd092a29c9adb07c3a08ae48889fb3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhkOxVDn1pj-gBHojwtp87G6Sm4IcbSscWsV6HWbzcYycTY5JVvDfd8WPWudiZph5eJnhRegTJUecK_J1BNoRRtq-f4f2qFJ9Q1Xb7rzqd9F-KTdkDs6pZOoD2uUd6QSVfA_B5X2s166EgiFafJ7T1uUaXMHJ41-h5rR2sTmZpxYvIQ8p4osJYp1GfJJqwVclxDVeganB4GMTLIbyDF6mKRv3Eb33sClu_6ku0NX30z_Ln83q94-z5fGqMS3pa-Ol5Y4N3HhjrKDArODWgxis8V4SZzzzligGTBkFdiDCcCASXCulVH7gC_TtUXc7DaOzxsWaYaO3OYyQ73WCoP_fxHCt1-lOSyEkbbtZ4OBJIKfbyZWqx1CM22wgujQVzXrGmBS9IDP65Q16M_8a5_ceKMrbtpvzAh0-UianUrLzL8dQoh_M0__Mm-HPr89_QZ-t4n8B7ySWSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621344521</pqid></control><display><type>article</type><title>Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Kaixin ; Zhu, Qianjin ; Qi, Liyan ; Guo, Mingwei ; Gao, Woming ; Gao, Qinwei</creator><creatorcontrib>Chang, Kaixin ; Zhu, Qianjin ; Qi, Liyan ; Guo, Mingwei ; Gao, Woming ; Gao, Qinwei</creatorcontrib><description>Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe ions, for Fe ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe ions displays an obvious linear relationship to Fe concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe ions.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15020466</identifier><identifier>PMID: 35057183</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aqueous solutions ; Carbon ; Ethylenediamine ; Ferric ions ; Fluorescence ; Functional groups ; High resolution electron microscopy ; Hydrochloric acid ; Infrared radiation ; Lactic acid ; Luminous intensity ; Molecular weight ; Nanomaterials ; Nitrogen ; Photoelectrons ; Photon correlation spectroscopy ; Protonation ; Quantum dots ; Quenching ; Spectrum analysis ; Sulfur ; Synthesis ; Ultraviolet radiation ; Ultraviolet spectra ; Visible spectrum</subject><ispartof>Materials, 2022-01, Vol.15 (2), p.466</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f8d3e2b3cfccd71a2d73dfa7bdcff80ecf2fd092a29c9adb07c3a08ae48889fb3</citedby><cites>FETCH-LOGICAL-c406t-f8d3e2b3cfccd71a2d73dfa7bdcff80ecf2fd092a29c9adb07c3a08ae48889fb3</cites><orcidid>0000-0002-8602-9968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35057183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Kaixin</creatorcontrib><creatorcontrib>Zhu, Qianjin</creatorcontrib><creatorcontrib>Qi, Liyan</creatorcontrib><creatorcontrib>Guo, Mingwei</creatorcontrib><creatorcontrib>Gao, Woming</creatorcontrib><creatorcontrib>Gao, Qinwei</creatorcontrib><title>Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe ions, for Fe ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe ions displays an obvious linear relationship to Fe concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe ions.</description><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Ethylenediamine</subject><subject>Ferric ions</subject><subject>Fluorescence</subject><subject>Functional groups</subject><subject>High resolution electron microscopy</subject><subject>Hydrochloric acid</subject><subject>Infrared radiation</subject><subject>Lactic acid</subject><subject>Luminous intensity</subject><subject>Molecular weight</subject><subject>Nanomaterials</subject><subject>Nitrogen</subject><subject>Photoelectrons</subject><subject>Photon correlation spectroscopy</subject><subject>Protonation</subject><subject>Quantum dots</subject><subject>Quenching</subject><subject>Spectrum analysis</subject><subject>Sulfur</subject><subject>Synthesis</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet spectra</subject><subject>Visible spectrum</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LHTEQhkOxVDn1pj-gBHojwtp87G6Sm4IcbSscWsV6HWbzcYycTY5JVvDfd8WPWudiZph5eJnhRegTJUecK_J1BNoRRtq-f4f2qFJ9Q1Xb7rzqd9F-KTdkDs6pZOoD2uUd6QSVfA_B5X2s166EgiFafJ7T1uUaXMHJ41-h5rR2sTmZpxYvIQ8p4osJYp1GfJJqwVclxDVeganB4GMTLIbyDF6mKRv3Eb33sClu_6ku0NX30z_Ln83q94-z5fGqMS3pa-Ol5Y4N3HhjrKDArODWgxis8V4SZzzzligGTBkFdiDCcCASXCulVH7gC_TtUXc7DaOzxsWaYaO3OYyQ73WCoP_fxHCt1-lOSyEkbbtZ4OBJIKfbyZWqx1CM22wgujQVzXrGmBS9IDP65Q16M_8a5_ceKMrbtpvzAh0-UianUrLzL8dQoh_M0__Mm-HPr89_QZ-t4n8B7ySWSQ</recordid><startdate>20220108</startdate><enddate>20220108</enddate><creator>Chang, Kaixin</creator><creator>Zhu, Qianjin</creator><creator>Qi, Liyan</creator><creator>Guo, Mingwei</creator><creator>Gao, Woming</creator><creator>Gao, Qinwei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8602-9968</orcidid></search><sort><creationdate>20220108</creationdate><title>Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source</title><author>Chang, Kaixin ; Zhu, Qianjin ; Qi, Liyan ; Guo, Mingwei ; Gao, Woming ; Gao, Qinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f8d3e2b3cfccd71a2d73dfa7bdcff80ecf2fd092a29c9adb07c3a08ae48889fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Ethylenediamine</topic><topic>Ferric ions</topic><topic>Fluorescence</topic><topic>Functional groups</topic><topic>High resolution electron microscopy</topic><topic>Hydrochloric acid</topic><topic>Infrared radiation</topic><topic>Lactic acid</topic><topic>Luminous intensity</topic><topic>Molecular weight</topic><topic>Nanomaterials</topic><topic>Nitrogen</topic><topic>Photoelectrons</topic><topic>Photon correlation spectroscopy</topic><topic>Protonation</topic><topic>Quantum dots</topic><topic>Quenching</topic><topic>Spectrum analysis</topic><topic>Sulfur</topic><topic>Synthesis</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet spectra</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Kaixin</creatorcontrib><creatorcontrib>Zhu, Qianjin</creatorcontrib><creatorcontrib>Qi, Liyan</creatorcontrib><creatorcontrib>Guo, Mingwei</creatorcontrib><creatorcontrib>Gao, Woming</creatorcontrib><creatorcontrib>Gao, Qinwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Kaixin</au><au>Zhu, Qianjin</au><au>Qi, Liyan</au><au>Guo, Mingwei</au><au>Gao, Woming</au><au>Gao, Qinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-01-08</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>466</spage><pages>466-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe ions, for Fe ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe ions displays an obvious linear relationship to Fe concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe ions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35057183</pmid><doi>10.3390/ma15020466</doi><orcidid>https://orcid.org/0000-0002-8602-9968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-01, Vol.15 (2), p.466
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778145
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aqueous solutions
Carbon
Ethylenediamine
Ferric ions
Fluorescence
Functional groups
High resolution electron microscopy
Hydrochloric acid
Infrared radiation
Lactic acid
Luminous intensity
Molecular weight
Nanomaterials
Nitrogen
Photoelectrons
Photon correlation spectroscopy
Protonation
Quantum dots
Quenching
Spectrum analysis
Sulfur
Synthesis
Ultraviolet radiation
Ultraviolet spectra
Visible spectrum
title Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Properties%20of%20Nitrogen-Doped%20Carbon%20Quantum%20Dots%20Using%20Lactic%20Acid%20as%20Carbon%20Source&rft.jtitle=Materials&rft.au=Chang,%20Kaixin&rft.date=2022-01-08&rft.volume=15&rft.issue=2&rft.spage=466&rft.pages=466-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15020466&rft_dat=%3Cproquest_pubme%3E2621344521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621344521&rft_id=info:pmid/35057183&rfr_iscdi=true