Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures

The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (2), p.482
Hauptverfasser: Korniejenko, Kinga, Figiela, Beata, Ziejewska, Celina, Marczyk, Joanna, Bazan, Patrycja, Hebda, Marek, Choińska, Marta, Lin, Wei-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 482
container_title Materials
container_volume 15
creator Korniejenko, Kinga
Figiela, Beata
Ziejewska, Celina
Marczyk, Joanna
Bazan, Patrycja
Hebda, Marek
Choińska, Marta
Lin, Wei-Ting
description The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber-17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.
doi_str_mv 10.3390/ma15020482
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621342964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-159dca5066b4984725427fd1dc6071e218a870c0199838e344f8f8d8743c02203</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4MottS--AdIwBctnObnJnkR6um1wkFB6nPIZSe9lN3Nmuwe9L8316u1Ni8ZJp_5zky-CL2l5BPnhnzuHZWEEaHZC3RMjWkW1Ajx8kl8hE5LuSX1cE41M6_REZdEKkbIMWpX2flpzoC_wtbtYso4BbxOww1exQ1k_BPiEFL20OILSGPq7vqaXaZ-TCVOULCb8LcYAmQYJnw1QnZTrNXX0N_HVbq8Qa-C6wqcPtwn6Nfq-_XycrG-uvixPF8vvBBkWlBpWu8kaZqNMFooJgVToaWtb4iiwKh2WhFP6maaa-BCBB10q5XgnjBG-An6ctAd500Pra8TZdfZMcfe5TubXLT_vwxxa2_SzmqllJamCnw8CGyflV2er-0-R4Tita_e0cp-eGiW0-8ZymT7WDx0nRsgzcWyhjGmlZR79P0z9DbNeahfsacoF8w0olJnB8rnVEqG8DgBJXbvtf3ndYXfPV31Ef3rLP8DqnqinA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621342964</pqid></control><display><type>article</type><title>Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Korniejenko, Kinga ; Figiela, Beata ; Ziejewska, Celina ; Marczyk, Joanna ; Bazan, Patrycja ; Hebda, Marek ; Choińska, Marta ; Lin, Wei-Ting</creator><creatorcontrib>Korniejenko, Kinga ; Figiela, Beata ; Ziejewska, Celina ; Marczyk, Joanna ; Bazan, Patrycja ; Hebda, Marek ; Choińska, Marta ; Lin, Wei-Ting</creatorcontrib><description>The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber-17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15020482</identifier><identifier>PMID: 35057200</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bend strength ; Carbon fibers ; Composition ; Engineering Sciences ; Fiber composites ; Fly ash ; Geopolymers ; Heating ; High temperature ; Long fibers ; Low temperature ; Mechanical properties ; Metakaolin ; Operating temperature ; Room temperature ; Sand ; Temperature</subject><ispartof>Materials, 2022-01, Vol.15 (2), p.482</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-159dca5066b4984725427fd1dc6071e218a870c0199838e344f8f8d8743c02203</citedby><cites>FETCH-LOGICAL-c440t-159dca5066b4984725427fd1dc6071e218a870c0199838e344f8f8d8743c02203</cites><orcidid>0000-0002-8583-9459 ; 0000-0001-5493-0914 ; 0000-0002-8265-3982 ; 0000-0003-4792-4457 ; 0000-0002-3916-4585 ; 0000-0002-5442-3119 ; 0000-0002-6383-7639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35057200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04733448$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Korniejenko, Kinga</creatorcontrib><creatorcontrib>Figiela, Beata</creatorcontrib><creatorcontrib>Ziejewska, Celina</creatorcontrib><creatorcontrib>Marczyk, Joanna</creatorcontrib><creatorcontrib>Bazan, Patrycja</creatorcontrib><creatorcontrib>Hebda, Marek</creatorcontrib><creatorcontrib>Choińska, Marta</creatorcontrib><creatorcontrib>Lin, Wei-Ting</creatorcontrib><title>Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber-17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.</description><subject>Bend strength</subject><subject>Carbon fibers</subject><subject>Composition</subject><subject>Engineering Sciences</subject><subject>Fiber composites</subject><subject>Fly ash</subject><subject>Geopolymers</subject><subject>Heating</subject><subject>High temperature</subject><subject>Long fibers</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Metakaolin</subject><subject>Operating temperature</subject><subject>Room temperature</subject><subject>Sand</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9rFDEQx4MottS--AdIwBctnObnJnkR6um1wkFB6nPIZSe9lN3Nmuwe9L8316u1Ni8ZJp_5zky-CL2l5BPnhnzuHZWEEaHZC3RMjWkW1Ajx8kl8hE5LuSX1cE41M6_REZdEKkbIMWpX2flpzoC_wtbtYso4BbxOww1exQ1k_BPiEFL20OILSGPq7vqaXaZ-TCVOULCb8LcYAmQYJnw1QnZTrNXX0N_HVbq8Qa-C6wqcPtwn6Nfq-_XycrG-uvixPF8vvBBkWlBpWu8kaZqNMFooJgVToaWtb4iiwKh2WhFP6maaa-BCBB10q5XgnjBG-An6ctAd500Pra8TZdfZMcfe5TubXLT_vwxxa2_SzmqllJamCnw8CGyflV2er-0-R4Tita_e0cp-eGiW0-8ZymT7WDx0nRsgzcWyhjGmlZR79P0z9DbNeahfsacoF8w0olJnB8rnVEqG8DgBJXbvtf3ndYXfPV31Ef3rLP8DqnqinA</recordid><startdate>20220109</startdate><enddate>20220109</enddate><creator>Korniejenko, Kinga</creator><creator>Figiela, Beata</creator><creator>Ziejewska, Celina</creator><creator>Marczyk, Joanna</creator><creator>Bazan, Patrycja</creator><creator>Hebda, Marek</creator><creator>Choińska, Marta</creator><creator>Lin, Wei-Ting</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8583-9459</orcidid><orcidid>https://orcid.org/0000-0001-5493-0914</orcidid><orcidid>https://orcid.org/0000-0002-8265-3982</orcidid><orcidid>https://orcid.org/0000-0003-4792-4457</orcidid><orcidid>https://orcid.org/0000-0002-3916-4585</orcidid><orcidid>https://orcid.org/0000-0002-5442-3119</orcidid><orcidid>https://orcid.org/0000-0002-6383-7639</orcidid></search><sort><creationdate>20220109</creationdate><title>Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures</title><author>Korniejenko, Kinga ; Figiela, Beata ; Ziejewska, Celina ; Marczyk, Joanna ; Bazan, Patrycja ; Hebda, Marek ; Choińska, Marta ; Lin, Wei-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-159dca5066b4984725427fd1dc6071e218a870c0199838e344f8f8d8743c02203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bend strength</topic><topic>Carbon fibers</topic><topic>Composition</topic><topic>Engineering Sciences</topic><topic>Fiber composites</topic><topic>Fly ash</topic><topic>Geopolymers</topic><topic>Heating</topic><topic>High temperature</topic><topic>Long fibers</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Metakaolin</topic><topic>Operating temperature</topic><topic>Room temperature</topic><topic>Sand</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korniejenko, Kinga</creatorcontrib><creatorcontrib>Figiela, Beata</creatorcontrib><creatorcontrib>Ziejewska, Celina</creatorcontrib><creatorcontrib>Marczyk, Joanna</creatorcontrib><creatorcontrib>Bazan, Patrycja</creatorcontrib><creatorcontrib>Hebda, Marek</creatorcontrib><creatorcontrib>Choińska, Marta</creatorcontrib><creatorcontrib>Lin, Wei-Ting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korniejenko, Kinga</au><au>Figiela, Beata</au><au>Ziejewska, Celina</au><au>Marczyk, Joanna</au><au>Bazan, Patrycja</au><au>Hebda, Marek</au><au>Choińska, Marta</au><au>Lin, Wei-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-01-09</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>482</spage><pages>482-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber-17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35057200</pmid><doi>10.3390/ma15020482</doi><orcidid>https://orcid.org/0000-0002-8583-9459</orcidid><orcidid>https://orcid.org/0000-0001-5493-0914</orcidid><orcidid>https://orcid.org/0000-0002-8265-3982</orcidid><orcidid>https://orcid.org/0000-0003-4792-4457</orcidid><orcidid>https://orcid.org/0000-0002-3916-4585</orcidid><orcidid>https://orcid.org/0000-0002-5442-3119</orcidid><orcidid>https://orcid.org/0000-0002-6383-7639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-01, Vol.15 (2), p.482
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777859
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bend strength
Carbon fibers
Composition
Engineering Sciences
Fiber composites
Fly ash
Geopolymers
Heating
High temperature
Long fibers
Low temperature
Mechanical properties
Metakaolin
Operating temperature
Room temperature
Sand
Temperature
title Fracture Behavior of Long Fiber Reinforced Geopolymer Composites at Different Operating Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Behavior%20of%20Long%20Fiber%20Reinforced%20Geopolymer%20Composites%20at%20Different%20Operating%20Temperatures&rft.jtitle=Materials&rft.au=Korniejenko,%20Kinga&rft.date=2022-01-09&rft.volume=15&rft.issue=2&rft.spage=482&rft.pages=482-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15020482&rft_dat=%3Cproquest_pubme%3E2621342964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621342964&rft_id=info:pmid/35057200&rfr_iscdi=true