Estimating the state of epidemics spreading with graph neural networks

When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-07, Vol.109 (1), p.249-263
Hauptverfasser: Tomy, Abhishek, Razzanelli, Matteo, Di Lauro, Francesco, Rus, Daniela, Della Santina, Cosimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 1
container_start_page 249
container_title Nonlinear dynamics
container_volume 109
creator Tomy, Abhishek
Razzanelli, Matteo
Di Lauro, Francesco
Rus, Daniela
Della Santina, Cosimo
description When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of deep neural networks to solve this challenging task. We base our proposed architecture on Graph Convolutional Neural Networks. As such, it can reason on the effect of the underlying social network structure, which is recognized as the main component in spreading an epidemic. The proposed architecture can reconstruct the entire state with accuracy above 70%, as proven by two scenarios modeled on the CoVid-19 pandemic. The first is a generic homogeneous population, and the second is a toy model of the Boston metropolitan area. Note that no retraining of the architecture is necessary when changing the model.
doi_str_mv 10.1007/s11071-021-07160-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684783018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f7d65a6a710edb5d4a4d3a7827756dc36bde5dde24833377ed15a22a949b20203</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EgrL8AQ4oEhcugfGSTHJBQohNQuICUm-WG0_bQJsE2wHx73FpWQ8crDn4mzfz5jG2z-GYA-CJ5xyQpyDiQ55DytfYgGcoU5GXw3U2gFKoFEoYbrFt7x8BQAooNtmWzABLAXzALi98qOcm1M0kCVNKfDCBknacUFdbmteVT3znyNgF8FqHaTJxppsmDfXOzGIJr6178rtsY2xmnvZWdYc9XF7cn1-nt3dXN-dnt2mlUIV0jDbPTG6QA9lRZpVRVhosBGKW20rmI0uZtSRUIaVEJMszI4QpVTkSIEDusNOlbteP5mQrakJcQ3cuenBvujW1_v3T1FM9aV90gYi8UFHgaCXg2ueefNDz2lc0m5mG2t5rkQtRZpjzBXr4B31se9dEe5EqFBYSeBEpsaQq13rvaPy1DAe9iEkvY9IxJv0Rk-ax6eCnja-Wz1wiIJdAPH68PLnv2f_IvgP-7540</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684783018</pqid></control><display><type>article</type><title>Estimating the state of epidemics spreading with graph neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tomy, Abhishek ; Razzanelli, Matteo ; Di Lauro, Francesco ; Rus, Daniela ; Della Santina, Cosimo</creator><creatorcontrib>Tomy, Abhishek ; Razzanelli, Matteo ; Di Lauro, Francesco ; Rus, Daniela ; Della Santina, Cosimo</creatorcontrib><description>When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of deep neural networks to solve this challenging task. We base our proposed architecture on Graph Convolutional Neural Networks. As such, it can reason on the effect of the underlying social network structure, which is recognized as the main component in spreading an epidemic. The proposed architecture can reconstruct the entire state with accuracy above 70%, as proven by two scenarios modeled on the CoVid-19 pandemic. The first is a generic homogeneous population, and the second is a toy model of the Boston metropolitan area. Note that no retraining of the architecture is necessary when changing the model.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07160-1</identifier><identifier>PMID: 35079201</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial neural networks ; Automotive Engineering ; Classical Mechanics ; Control ; Coronaviruses ; COVID-19 ; Deep learning ; Disease transmission ; Dynamical Systems ; Engineering ; Epidemics ; Graph neural networks ; Kalman filters ; Mechanical Engineering ; Metropolitan areas ; Neural networks ; Original Paper ; Pandemics ; Population ; Robotics ; Social networks ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-07, Vol.109 (1), p.249-263</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f7d65a6a710edb5d4a4d3a7827756dc36bde5dde24833377ed15a22a949b20203</citedby><cites>FETCH-LOGICAL-c474t-f7d65a6a710edb5d4a4d3a7827756dc36bde5dde24833377ed15a22a949b20203</cites><orcidid>0000-0003-1067-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-07160-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-07160-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35079201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomy, Abhishek</creatorcontrib><creatorcontrib>Razzanelli, Matteo</creatorcontrib><creatorcontrib>Di Lauro, Francesco</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><creatorcontrib>Della Santina, Cosimo</creatorcontrib><title>Estimating the state of epidemics spreading with graph neural networks</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><addtitle>Nonlinear Dyn</addtitle><description>When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of deep neural networks to solve this challenging task. We base our proposed architecture on Graph Convolutional Neural Networks. As such, it can reason on the effect of the underlying social network structure, which is recognized as the main component in spreading an epidemic. The proposed architecture can reconstruct the entire state with accuracy above 70%, as proven by two scenarios modeled on the CoVid-19 pandemic. The first is a generic homogeneous population, and the second is a toy model of the Boston metropolitan area. Note that no retraining of the architecture is necessary when changing the model.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Disease transmission</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Graph neural networks</subject><subject>Kalman filters</subject><subject>Mechanical Engineering</subject><subject>Metropolitan areas</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Pandemics</subject><subject>Population</subject><subject>Robotics</subject><subject>Social networks</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAQhS0EgrL8AQ4oEhcugfGSTHJBQohNQuICUm-WG0_bQJsE2wHx73FpWQ8crDn4mzfz5jG2z-GYA-CJ5xyQpyDiQ55DytfYgGcoU5GXw3U2gFKoFEoYbrFt7x8BQAooNtmWzABLAXzALi98qOcm1M0kCVNKfDCBknacUFdbmteVT3znyNgF8FqHaTJxppsmDfXOzGIJr6178rtsY2xmnvZWdYc9XF7cn1-nt3dXN-dnt2mlUIV0jDbPTG6QA9lRZpVRVhosBGKW20rmI0uZtSRUIaVEJMszI4QpVTkSIEDusNOlbteP5mQrakJcQ3cuenBvujW1_v3T1FM9aV90gYi8UFHgaCXg2ueefNDz2lc0m5mG2t5rkQtRZpjzBXr4B31se9dEe5EqFBYSeBEpsaQq13rvaPy1DAe9iEkvY9IxJv0Rk-ax6eCnja-Wz1wiIJdAPH68PLnv2f_IvgP-7540</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Tomy, Abhishek</creator><creator>Razzanelli, Matteo</creator><creator>Di Lauro, Francesco</creator><creator>Rus, Daniela</creator><creator>Della Santina, Cosimo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1067-1134</orcidid></search><sort><creationdate>20220701</creationdate><title>Estimating the state of epidemics spreading with graph neural networks</title><author>Tomy, Abhishek ; Razzanelli, Matteo ; Di Lauro, Francesco ; Rus, Daniela ; Della Santina, Cosimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f7d65a6a710edb5d4a4d3a7827756dc36bde5dde24833377ed15a22a949b20203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Disease transmission</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Graph neural networks</topic><topic>Kalman filters</topic><topic>Mechanical Engineering</topic><topic>Metropolitan areas</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Pandemics</topic><topic>Population</topic><topic>Robotics</topic><topic>Social networks</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomy, Abhishek</creatorcontrib><creatorcontrib>Razzanelli, Matteo</creatorcontrib><creatorcontrib>Di Lauro, Francesco</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><creatorcontrib>Della Santina, Cosimo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomy, Abhishek</au><au>Razzanelli, Matteo</au><au>Di Lauro, Francesco</au><au>Rus, Daniela</au><au>Della Santina, Cosimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the state of epidemics spreading with graph neural networks</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><addtitle>Nonlinear Dyn</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>109</volume><issue>1</issue><spage>249</spage><epage>263</epage><pages>249-263</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>When an epidemic spreads into a population, it is often impractical or impossible to continuously monitor all subjects involved. As an alternative, we propose using algorithmic solutions that can infer the state of the whole population from a limited number of measures. We analyze the capability of deep neural networks to solve this challenging task. We base our proposed architecture on Graph Convolutional Neural Networks. As such, it can reason on the effect of the underlying social network structure, which is recognized as the main component in spreading an epidemic. The proposed architecture can reconstruct the entire state with accuracy above 70%, as proven by two scenarios modeled on the CoVid-19 pandemic. The first is a generic homogeneous population, and the second is a toy model of the Boston metropolitan area. Note that no retraining of the architecture is necessary when changing the model.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35079201</pmid><doi>10.1007/s11071-021-07160-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1067-1134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-07, Vol.109 (1), p.249-263
issn 0924-090X
1573-269X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777184
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Automotive Engineering
Classical Mechanics
Control
Coronaviruses
COVID-19
Deep learning
Disease transmission
Dynamical Systems
Engineering
Epidemics
Graph neural networks
Kalman filters
Mechanical Engineering
Metropolitan areas
Neural networks
Original Paper
Pandemics
Population
Robotics
Social networks
Vibration
title Estimating the state of epidemics spreading with graph neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20state%20of%20epidemics%20spreading%20with%20graph%20neural%20networks&rft.jtitle=Nonlinear%20dynamics&rft.au=Tomy,%20Abhishek&rft.date=2022-07-01&rft.volume=109&rft.issue=1&rft.spage=249&rft.epage=263&rft.pages=249-263&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07160-1&rft_dat=%3Cproquest_pubme%3E2684783018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684783018&rft_id=info:pmid/35079201&rfr_iscdi=true