Taking the Monte‐Carlo gamble: How not to buckle under the pressure

Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte‐Carlo (MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2022-03, Vol.43 (6), p.431-434
Hauptverfasser: Gomez, Yessica K., Natale, Andrew M., Lincoff, James, Wolgemuth, Charles W., Rosenberg, John M., Grabe, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 6
container_start_page 431
container_title Journal of computational chemistry
container_volume 43
creator Gomez, Yessica K.
Natale, Andrew M.
Lincoff, James
Wolgemuth, Charles W.
Rosenberg, John M.
Grabe, Michael
description Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte‐Carlo (MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat‐hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential‐switching when the MC barostat is employed to avoid undesirable membrane deformations. Significant distortions of a large bio‐membrane (lipid bilayer) are noted when a specific combination of molecular dynamics simulation parameters is employed (Monte‐Carlo (MC) barostat and Lennard–Jones hard cutoff (≤10 Å)). Other factors, such as molecular dynamics engine and protein force field are not causative. Smaller membrane patches simulated with the problematic combination show compressive effects but do not buckle. Nonetheless, we strongly suggest caution when using this parameter combination to simulate membrane systems.
doi_str_mv 10.1002/jcc.26798
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611652478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-d5a7793d307233bb08bdfa1bac4f99c194f929a76be9c834ab73d18404e9b4063</originalsourceid><addsrcrecordid>eNp1kctO3DAUhq2qqAy0i74AitRNWQR8iy8sKlURV4G6oVJ3lu2cGTJk4sFOitjxCDwjT4JhKAKkrs7ifOfTf_Qj9JXgHYIx3Z17v0OF1OoDmhCsRamV_PMRTTDRtFSiIutoI6U5xphVgn9C64xrSiqBJ2j_3F62_awYLqA4C_0A97d3tY1dKGZ24TrYK47CddGHoRhC4UZ_2UEx9g3Ep4tlhJTGCJ_R2tR2Cb48z030-2D_vD4qT38dHtc_T0vPOVNlU1kpNWsYlpQx57ByzdQSZz2fau2JzoNqK4UD7RXj1knWEMUxB-04FmwT_Vh5l6NbQOOhH6LtzDK2CxtvTLCtebvp2wszC3-NklJUmmXB92dBDFcjpMEs2uSh62wPYUyGCkJERblUGf32Dp2HMfb5vUxRQlQlGc7U9oryMaQUYfoShmDzWI7J5ZincjK79Tr9C_mvjQzsroDrtoOb_5vMSV2vlA8Xx5kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621185730</pqid></control><display><type>article</type><title>Taking the Monte‐Carlo gamble: How not to buckle under the pressure</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gomez, Yessica K. ; Natale, Andrew M. ; Lincoff, James ; Wolgemuth, Charles W. ; Rosenberg, John M. ; Grabe, Michael</creator><creatorcontrib>Gomez, Yessica K. ; Natale, Andrew M. ; Lincoff, James ; Wolgemuth, Charles W. ; Rosenberg, John M. ; Grabe, Michael</creatorcontrib><description>Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte‐Carlo (MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat‐hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential‐switching when the MC barostat is employed to avoid undesirable membrane deformations. Significant distortions of a large bio‐membrane (lipid bilayer) are noted when a specific combination of molecular dynamics simulation parameters is employed (Monte‐Carlo (MC) barostat and Lennard–Jones hard cutoff (≤10 Å)). Other factors, such as molecular dynamics engine and protein force field are not causative. Smaller membrane patches simulated with the problematic combination show compressive effects but do not buckle. Nonetheless, we strongly suggest caution when using this parameter combination to simulate membrane systems.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.26798</identifier><identifier>PMID: 34921560</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>barostat ; Buckling ; curvature ; lipid bilayer ; Membranes ; Membranes, Artificial ; Models, Theoretical ; Molecular dynamics ; Molecular Dynamics Simulation ; Monte Carlo Method ; Monte‐Carlo ; Pressure ; Simulation ; Thickening</subject><ispartof>Journal of computational chemistry, 2022-03, Vol.43 (6), p.431-434</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-d5a7793d307233bb08bdfa1bac4f99c194f929a76be9c834ab73d18404e9b4063</citedby><cites>FETCH-LOGICAL-c4438-d5a7793d307233bb08bdfa1bac4f99c194f929a76be9c834ab73d18404e9b4063</cites><orcidid>0000-0003-3509-5997 ; 0000-0002-3976-5209 ; 0000-0002-6320-0216 ; 0000-0003-3090-1240 ; 0000-0001-7616-4376 ; 0000-0002-3588-3136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.26798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.26798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34921560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez, Yessica K.</creatorcontrib><creatorcontrib>Natale, Andrew M.</creatorcontrib><creatorcontrib>Lincoff, James</creatorcontrib><creatorcontrib>Wolgemuth, Charles W.</creatorcontrib><creatorcontrib>Rosenberg, John M.</creatorcontrib><creatorcontrib>Grabe, Michael</creatorcontrib><title>Taking the Monte‐Carlo gamble: How not to buckle under the pressure</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte‐Carlo (MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat‐hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential‐switching when the MC barostat is employed to avoid undesirable membrane deformations. Significant distortions of a large bio‐membrane (lipid bilayer) are noted when a specific combination of molecular dynamics simulation parameters is employed (Monte‐Carlo (MC) barostat and Lennard–Jones hard cutoff (≤10 Å)). Other factors, such as molecular dynamics engine and protein force field are not causative. Smaller membrane patches simulated with the problematic combination show compressive effects but do not buckle. Nonetheless, we strongly suggest caution when using this parameter combination to simulate membrane systems.</description><subject>barostat</subject><subject>Buckling</subject><subject>curvature</subject><subject>lipid bilayer</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Models, Theoretical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo Method</subject><subject>Monte‐Carlo</subject><subject>Pressure</subject><subject>Simulation</subject><subject>Thickening</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3DAUhq2qqAy0i74AitRNWQR8iy8sKlURV4G6oVJ3lu2cGTJk4sFOitjxCDwjT4JhKAKkrs7ifOfTf_Qj9JXgHYIx3Z17v0OF1OoDmhCsRamV_PMRTTDRtFSiIutoI6U5xphVgn9C64xrSiqBJ2j_3F62_awYLqA4C_0A97d3tY1dKGZ24TrYK47CddGHoRhC4UZ_2UEx9g3Ep4tlhJTGCJ_R2tR2Cb48z030-2D_vD4qT38dHtc_T0vPOVNlU1kpNWsYlpQx57ByzdQSZz2fau2JzoNqK4UD7RXj1knWEMUxB-04FmwT_Vh5l6NbQOOhH6LtzDK2CxtvTLCtebvp2wszC3-NklJUmmXB92dBDFcjpMEs2uSh62wPYUyGCkJERblUGf32Dp2HMfb5vUxRQlQlGc7U9oryMaQUYfoShmDzWI7J5ZincjK79Tr9C_mvjQzsroDrtoOb_5vMSV2vlA8Xx5kg</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Gomez, Yessica K.</creator><creator>Natale, Andrew M.</creator><creator>Lincoff, James</creator><creator>Wolgemuth, Charles W.</creator><creator>Rosenberg, John M.</creator><creator>Grabe, Michael</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3509-5997</orcidid><orcidid>https://orcid.org/0000-0002-3976-5209</orcidid><orcidid>https://orcid.org/0000-0002-6320-0216</orcidid><orcidid>https://orcid.org/0000-0003-3090-1240</orcidid><orcidid>https://orcid.org/0000-0001-7616-4376</orcidid><orcidid>https://orcid.org/0000-0002-3588-3136</orcidid></search><sort><creationdate>20220305</creationdate><title>Taking the Monte‐Carlo gamble: How not to buckle under the pressure</title><author>Gomez, Yessica K. ; Natale, Andrew M. ; Lincoff, James ; Wolgemuth, Charles W. ; Rosenberg, John M. ; Grabe, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-d5a7793d307233bb08bdfa1bac4f99c194f929a76be9c834ab73d18404e9b4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>barostat</topic><topic>Buckling</topic><topic>curvature</topic><topic>lipid bilayer</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Models, Theoretical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo Method</topic><topic>Monte‐Carlo</topic><topic>Pressure</topic><topic>Simulation</topic><topic>Thickening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Yessica K.</creatorcontrib><creatorcontrib>Natale, Andrew M.</creatorcontrib><creatorcontrib>Lincoff, James</creatorcontrib><creatorcontrib>Wolgemuth, Charles W.</creatorcontrib><creatorcontrib>Rosenberg, John M.</creatorcontrib><creatorcontrib>Grabe, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, Yessica K.</au><au>Natale, Andrew M.</au><au>Lincoff, James</au><au>Wolgemuth, Charles W.</au><au>Rosenberg, John M.</au><au>Grabe, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taking the Monte‐Carlo gamble: How not to buckle under the pressure</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2022-03-05</date><risdate>2022</risdate><volume>43</volume><issue>6</issue><spage>431</spage><epage>434</epage><pages>431-434</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte‐Carlo (MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat‐hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential‐switching when the MC barostat is employed to avoid undesirable membrane deformations. Significant distortions of a large bio‐membrane (lipid bilayer) are noted when a specific combination of molecular dynamics simulation parameters is employed (Monte‐Carlo (MC) barostat and Lennard–Jones hard cutoff (≤10 Å)). Other factors, such as molecular dynamics engine and protein force field are not causative. Smaller membrane patches simulated with the problematic combination show compressive effects but do not buckle. Nonetheless, we strongly suggest caution when using this parameter combination to simulate membrane systems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34921560</pmid><doi>10.1002/jcc.26798</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3509-5997</orcidid><orcidid>https://orcid.org/0000-0002-3976-5209</orcidid><orcidid>https://orcid.org/0000-0002-6320-0216</orcidid><orcidid>https://orcid.org/0000-0003-3090-1240</orcidid><orcidid>https://orcid.org/0000-0001-7616-4376</orcidid><orcidid>https://orcid.org/0000-0002-3588-3136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2022-03, Vol.43 (6), p.431-434
issn 0192-8651
1096-987X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776593
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects barostat
Buckling
curvature
lipid bilayer
Membranes
Membranes, Artificial
Models, Theoretical
Molecular dynamics
Molecular Dynamics Simulation
Monte Carlo Method
Monte‐Carlo
Pressure
Simulation
Thickening
title Taking the Monte‐Carlo gamble: How not to buckle under the pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taking%20the%20Monte%E2%80%90Carlo%20gamble:%20How%20not%20to%20buckle%20under%20the%20pressure&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Gomez,%20Yessica%20K.&rft.date=2022-03-05&rft.volume=43&rft.issue=6&rft.spage=431&rft.epage=434&rft.pages=431-434&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.26798&rft_dat=%3Cproquest_pubme%3E2611652478%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621185730&rft_id=info:pmid/34921560&rfr_iscdi=true