Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea

This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-01, Vol.19 (2), p.824
Hauptverfasser: Lym, Youngbin, Lym, Hyobin, Kim, Keekwang, Kim, Ki-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 824
container_title International journal of environmental research and public health
container_volume 19
creator Lym, Youngbin
Lym, Hyobin
Kim, Keekwang
Kim, Ki-Jung
description This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices along with latent influences from the spatial alignment of municipalities and their serial (temporal) correlation. Utilizing a flexible hierarchical Bayesian model as an analytic operational framework, we exploit the modified BYM (BYM2) model with the Penalized Complexity (PC) priors to account for latent effects (unobserved heterogeneity). The outcome reveals that a municipality with higher population density is likely to have an elevated infection risk, whereas one with good preparedness for infectious disease tends to have a reduction in risk. Furthermore, we identify that including spatial and temporal correlations into the modeling framework significantly improves the performance and explanatory power, justifying our adoption of latent effects. Based on these findings, we present the dynamic evolution of COVID-19 across the Seoul Capital Area (SCA), which helps us verify unique patterns of disease spread as well as regions of elevated risk for further policy intervention and for supporting informed decision making for responding to infectious diseases.
doi_str_mv 10.3390/ijerph19020824
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621297867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a50424b97dcb6c575c6d5bfc9e6e0be5bd9ae5f760f1ceeae9c74e37cd6afe6d3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0Eoh9w5YgsceGSYif-iC9I1UJhxUqVusDVcpxJ10vWDrZT6Il_HW9bqpaTrZnfPM2bh9ArSk6aRpF3bgtx2lBFatLW7Ak6pEKQiglCnz74H6CjlLaENC0T6jk6aDjhXDB-iP6sJ5NdyLCbQjQjPk0pWLcv-YQ7yL8APF4FW1prM0C-xiu4ghEvfQ-_sfE9Xpx_X36oqCqlAex-EF-49CNhY2NICS_M5HIZv4DLG1Hn8TrMeYO_hAjmBXo2mDHBy7v3GH07-_h18blanX9aLk5XlWW0zZXhhNWsU7K3nbBccit63g1WgQDSAe96ZYAPUpCBWgADykoGjbS9KFuLvjlG7291p7nbQW_B52JXT9HtTLzWwTj9uOPdRl-GK91KKajgReDtnUAMP2dIWe9csjCOxkOYk65FXdeSUUoL-uY_dBvm6Iu9PUVrJVshC3VyS92cKcJwvwwlep-tfpxtGXj90MI9_i_M5i-dmaOx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621297867</pqid></control><display><type>article</type><title>Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Lym, Youngbin ; Lym, Hyobin ; Kim, Keekwang ; Kim, Ki-Jung</creator><creatorcontrib>Lym, Youngbin ; Lym, Hyobin ; Kim, Keekwang ; Kim, Ki-Jung</creatorcontrib><description>This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices along with latent influences from the spatial alignment of municipalities and their serial (temporal) correlation. Utilizing a flexible hierarchical Bayesian model as an analytic operational framework, we exploit the modified BYM (BYM2) model with the Penalized Complexity (PC) priors to account for latent effects (unobserved heterogeneity). The outcome reveals that a municipality with higher population density is likely to have an elevated infection risk, whereas one with good preparedness for infectious disease tends to have a reduction in risk. Furthermore, we identify that including spatial and temporal correlations into the modeling framework significantly improves the performance and explanatory power, justifying our adoption of latent effects. Based on these findings, we present the dynamic evolution of COVID-19 across the Seoul Capital Area (SCA), which helps us verify unique patterns of disease spread as well as regions of elevated risk for further policy intervention and for supporting informed decision making for responding to infectious diseases.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph19020824</identifier><identifier>PMID: 35055645</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bayes Theorem ; Bayesian analysis ; Coronaviruses ; COVID-19 ; Decision making ; Disease spread ; Disease transmission ; Fatalities ; Growth models ; Health risks ; Heterogeneity ; Humans ; Infections ; Infectious diseases ; Municipalities ; Pandemics ; Population ; Population density ; Provinces ; Public health ; Regions ; Republic of Korea - epidemiology ; Risk ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; Sociodemographics ; Spatial data ; Traffic accidents &amp; safety</subject><ispartof>International journal of environmental research and public health, 2022-01, Vol.19 (2), p.824</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a50424b97dcb6c575c6d5bfc9e6e0be5bd9ae5f760f1ceeae9c74e37cd6afe6d3</citedby><cites>FETCH-LOGICAL-c418t-a50424b97dcb6c575c6d5bfc9e6e0be5bd9ae5f760f1ceeae9c74e37cd6afe6d3</cites><orcidid>0000-0001-5903-8618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35055645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lym, Youngbin</creatorcontrib><creatorcontrib>Lym, Hyobin</creatorcontrib><creatorcontrib>Kim, Keekwang</creatorcontrib><creatorcontrib>Kim, Ki-Jung</creatorcontrib><title>Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices along with latent influences from the spatial alignment of municipalities and their serial (temporal) correlation. Utilizing a flexible hierarchical Bayesian model as an analytic operational framework, we exploit the modified BYM (BYM2) model with the Penalized Complexity (PC) priors to account for latent effects (unobserved heterogeneity). The outcome reveals that a municipality with higher population density is likely to have an elevated infection risk, whereas one with good preparedness for infectious disease tends to have a reduction in risk. Furthermore, we identify that including spatial and temporal correlations into the modeling framework significantly improves the performance and explanatory power, justifying our adoption of latent effects. Based on these findings, we present the dynamic evolution of COVID-19 across the Seoul Capital Area (SCA), which helps us verify unique patterns of disease spread as well as regions of elevated risk for further policy intervention and for supporting informed decision making for responding to infectious diseases.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision making</subject><subject>Disease spread</subject><subject>Disease transmission</subject><subject>Fatalities</subject><subject>Growth models</subject><subject>Health risks</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Municipalities</subject><subject>Pandemics</subject><subject>Population</subject><subject>Population density</subject><subject>Provinces</subject><subject>Public health</subject><subject>Regions</subject><subject>Republic of Korea - epidemiology</subject><subject>Risk</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Sociodemographics</subject><subject>Spatial data</subject><subject>Traffic accidents &amp; safety</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1v1DAQxS0Eoh9w5YgsceGSYif-iC9I1UJhxUqVusDVcpxJ10vWDrZT6Il_HW9bqpaTrZnfPM2bh9ArSk6aRpF3bgtx2lBFatLW7Ak6pEKQiglCnz74H6CjlLaENC0T6jk6aDjhXDB-iP6sJ5NdyLCbQjQjPk0pWLcv-YQ7yL8APF4FW1prM0C-xiu4ghEvfQ-_sfE9Xpx_X36oqCqlAex-EF-49CNhY2NICS_M5HIZv4DLG1Hn8TrMeYO_hAjmBXo2mDHBy7v3GH07-_h18blanX9aLk5XlWW0zZXhhNWsU7K3nbBccit63g1WgQDSAe96ZYAPUpCBWgADykoGjbS9KFuLvjlG7291p7nbQW_B52JXT9HtTLzWwTj9uOPdRl-GK91KKajgReDtnUAMP2dIWe9csjCOxkOYk65FXdeSUUoL-uY_dBvm6Iu9PUVrJVshC3VyS92cKcJwvwwlep-tfpxtGXj90MI9_i_M5i-dmaOx</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Lym, Youngbin</creator><creator>Lym, Hyobin</creator><creator>Kim, Keekwang</creator><creator>Kim, Ki-Jung</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5903-8618</orcidid></search><sort><creationdate>20220112</creationdate><title>Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea</title><author>Lym, Youngbin ; Lym, Hyobin ; Kim, Keekwang ; Kim, Ki-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a50424b97dcb6c575c6d5bfc9e6e0be5bd9ae5f760f1ceeae9c74e37cd6afe6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision making</topic><topic>Disease spread</topic><topic>Disease transmission</topic><topic>Fatalities</topic><topic>Growth models</topic><topic>Health risks</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Municipalities</topic><topic>Pandemics</topic><topic>Population</topic><topic>Population density</topic><topic>Provinces</topic><topic>Public health</topic><topic>Regions</topic><topic>Republic of Korea - epidemiology</topic><topic>Risk</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Sociodemographics</topic><topic>Spatial data</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lym, Youngbin</creatorcontrib><creatorcontrib>Lym, Hyobin</creatorcontrib><creatorcontrib>Kim, Keekwang</creatorcontrib><creatorcontrib>Kim, Ki-Jung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lym, Youngbin</au><au>Lym, Hyobin</au><au>Kim, Keekwang</au><au>Kim, Ki-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>824</spage><pages>824-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices along with latent influences from the spatial alignment of municipalities and their serial (temporal) correlation. Utilizing a flexible hierarchical Bayesian model as an analytic operational framework, we exploit the modified BYM (BYM2) model with the Penalized Complexity (PC) priors to account for latent effects (unobserved heterogeneity). The outcome reveals that a municipality with higher population density is likely to have an elevated infection risk, whereas one with good preparedness for infectious disease tends to have a reduction in risk. Furthermore, we identify that including spatial and temporal correlations into the modeling framework significantly improves the performance and explanatory power, justifying our adoption of latent effects. Based on these findings, we present the dynamic evolution of COVID-19 across the Seoul Capital Area (SCA), which helps us verify unique patterns of disease spread as well as regions of elevated risk for further policy intervention and for supporting informed decision making for responding to infectious diseases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35055645</pmid><doi>10.3390/ijerph19020824</doi><orcidid>https://orcid.org/0000-0001-5903-8618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-01, Vol.19 (2), p.824
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776165
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Bayes Theorem
Bayesian analysis
Coronaviruses
COVID-19
Decision making
Disease spread
Disease transmission
Fatalities
Growth models
Health risks
Heterogeneity
Humans
Infections
Infectious diseases
Municipalities
Pandemics
Population
Population density
Provinces
Public health
Regions
Republic of Korea - epidemiology
Risk
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Sociodemographics
Spatial data
Traffic accidents & safety
title Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Associations%20between%20Local%20Safety%20Level%20Index%20and%20COVID-19%20Infection%20Risks%20across%20Capital%20Regions%20in%20South%20Korea&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Lym,%20Youngbin&rft.date=2022-01-12&rft.volume=19&rft.issue=2&rft.spage=824&rft.pages=824-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph19020824&rft_dat=%3Cproquest_pubme%3E2621297867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621297867&rft_id=info:pmid/35055645&rfr_iscdi=true