Reinforcement learning detuned in addiction: integrative and translational approaches

Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in neurosciences (Regular ed.) 2022-02, Vol.45 (2), p.96-105
Hauptverfasser: Groman, Stephanie M., Thompson, Summer L., Lee, Daeyeol, Taylor, Jane R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 2
container_start_page 96
container_title Trends in neurosciences (Regular ed.)
container_volume 45
creator Groman, Stephanie M.
Thompson, Summer L.
Lee, Daeyeol
Taylor, Jane R.
description Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction. Maladaptive decision-making in substance-dependent populations reflects both pre-existing risk factors and drug-induced adaptations in specific neurobiological processes.Delineating the relevant decision-making processes is essential for identifying biological markers for addiction susceptibility and for developing novel targets for the treatment of addiction.New neuroscience techniques probing learning mechanisms demonstrated that different decision-making computations are mediated by distinct neural, circuit, and cellular systems.Computational biomarkers of decision-making functions are key for revealing the neurobiological mechanisms of addiction.
doi_str_mv 10.1016/j.tins.2021.11.007
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8770604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223621002368</els_id><sourcerecordid>S0166223621002368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-30c59d3de7cd12eaf9c6ea00de1436ad65b237ba85f9c7a2e86d89da1f16c4943</originalsourceid><addsrcrecordid>eNp9kFtL7DAQx4Mc0fXyBXyQfoHWTNqmqYhwEG8gCKLgW5hNpmuWbrokceF8-9OyKvri0zD8L8P8GDsBXgAHebYskvOxEFxAAVBw3uywGahG5cDV6x82G00yF6KU--wgxiXnUCmo9th-WbWCK1XN2MsTOd8NwdCKfMp6wuCdX2SW0rsnmzmfobXOJDf483FLtAiY3IYy9DZLAX3scRKxz3C9DgOaN4pHbLfDPtLxxzxkLzfXz1d3-cPj7f3V34fcVHWd8pKburWlpcZYEIRdayQh55agKiVaWc9F2cxR1aPSoCAlrWotQgfSVG1VHrLLbe_6fb4ia8YXAvZ6HdwKwz89oNM_Fe_e9GLYaNU0XPKpQGwLTBhiDNR9ZYHrCbJe6gmyniBrAD1CHkOn369-RT6pjoaLrYHG3zeOgo7GkTdkXSCTtB3cb_3_Ac_ukis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reinforcement learning detuned in addiction: integrative and translational approaches</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Groman, Stephanie M. ; Thompson, Summer L. ; Lee, Daeyeol ; Taylor, Jane R.</creator><creatorcontrib>Groman, Stephanie M. ; Thompson, Summer L. ; Lee, Daeyeol ; Taylor, Jane R.</creatorcontrib><description>Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction. Maladaptive decision-making in substance-dependent populations reflects both pre-existing risk factors and drug-induced adaptations in specific neurobiological processes.Delineating the relevant decision-making processes is essential for identifying biological markers for addiction susceptibility and for developing novel targets for the treatment of addiction.New neuroscience techniques probing learning mechanisms demonstrated that different decision-making computations are mediated by distinct neural, circuit, and cellular systems.Computational biomarkers of decision-making functions are key for revealing the neurobiological mechanisms of addiction.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2021.11.007</identifier><identifier>PMID: 34920884</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>amygdala ; Animals ; Behavior, Addictive ; Decision Making - physiology ; decision-making ; dopamine ; Humans ; mGlu5 ; nucleus accumbens ; orbitofrontal cortex ; Reinforcement, Psychology ; Substance-Related Disorders</subject><ispartof>Trends in neurosciences (Regular ed.), 2022-02, Vol.45 (2), p.96-105</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-30c59d3de7cd12eaf9c6ea00de1436ad65b237ba85f9c7a2e86d89da1f16c4943</citedby><cites>FETCH-LOGICAL-c455t-30c59d3de7cd12eaf9c6ea00de1436ad65b237ba85f9c7a2e86d89da1f16c4943</cites><orcidid>0000-0002-5231-0612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tins.2021.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34920884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groman, Stephanie M.</creatorcontrib><creatorcontrib>Thompson, Summer L.</creatorcontrib><creatorcontrib>Lee, Daeyeol</creatorcontrib><creatorcontrib>Taylor, Jane R.</creatorcontrib><title>Reinforcement learning detuned in addiction: integrative and translational approaches</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction. Maladaptive decision-making in substance-dependent populations reflects both pre-existing risk factors and drug-induced adaptations in specific neurobiological processes.Delineating the relevant decision-making processes is essential for identifying biological markers for addiction susceptibility and for developing novel targets for the treatment of addiction.New neuroscience techniques probing learning mechanisms demonstrated that different decision-making computations are mediated by distinct neural, circuit, and cellular systems.Computational biomarkers of decision-making functions are key for revealing the neurobiological mechanisms of addiction.</description><subject>amygdala</subject><subject>Animals</subject><subject>Behavior, Addictive</subject><subject>Decision Making - physiology</subject><subject>decision-making</subject><subject>dopamine</subject><subject>Humans</subject><subject>mGlu5</subject><subject>nucleus accumbens</subject><subject>orbitofrontal cortex</subject><subject>Reinforcement, Psychology</subject><subject>Substance-Related Disorders</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtL7DAQx4Mc0fXyBXyQfoHWTNqmqYhwEG8gCKLgW5hNpmuWbrokceF8-9OyKvri0zD8L8P8GDsBXgAHebYskvOxEFxAAVBw3uywGahG5cDV6x82G00yF6KU--wgxiXnUCmo9th-WbWCK1XN2MsTOd8NwdCKfMp6wuCdX2SW0rsnmzmfobXOJDf483FLtAiY3IYy9DZLAX3scRKxz3C9DgOaN4pHbLfDPtLxxzxkLzfXz1d3-cPj7f3V34fcVHWd8pKburWlpcZYEIRdayQh55agKiVaWc9F2cxR1aPSoCAlrWotQgfSVG1VHrLLbe_6fb4ia8YXAvZ6HdwKwz89oNM_Fe_e9GLYaNU0XPKpQGwLTBhiDNR9ZYHrCbJe6gmyniBrAD1CHkOn369-RT6pjoaLrYHG3zeOgo7GkTdkXSCTtB3cb_3_Ac_ukis</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Groman, Stephanie M.</creator><creator>Thompson, Summer L.</creator><creator>Lee, Daeyeol</creator><creator>Taylor, Jane R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5231-0612</orcidid></search><sort><creationdate>20220201</creationdate><title>Reinforcement learning detuned in addiction: integrative and translational approaches</title><author>Groman, Stephanie M. ; Thompson, Summer L. ; Lee, Daeyeol ; Taylor, Jane R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-30c59d3de7cd12eaf9c6ea00de1436ad65b237ba85f9c7a2e86d89da1f16c4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>amygdala</topic><topic>Animals</topic><topic>Behavior, Addictive</topic><topic>Decision Making - physiology</topic><topic>decision-making</topic><topic>dopamine</topic><topic>Humans</topic><topic>mGlu5</topic><topic>nucleus accumbens</topic><topic>orbitofrontal cortex</topic><topic>Reinforcement, Psychology</topic><topic>Substance-Related Disorders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groman, Stephanie M.</creatorcontrib><creatorcontrib>Thompson, Summer L.</creatorcontrib><creatorcontrib>Lee, Daeyeol</creatorcontrib><creatorcontrib>Taylor, Jane R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groman, Stephanie M.</au><au>Thompson, Summer L.</au><au>Lee, Daeyeol</au><au>Taylor, Jane R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning detuned in addiction: integrative and translational approaches</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>96</spage><epage>105</epage><pages>96-105</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><abstract>Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction. Maladaptive decision-making in substance-dependent populations reflects both pre-existing risk factors and drug-induced adaptations in specific neurobiological processes.Delineating the relevant decision-making processes is essential for identifying biological markers for addiction susceptibility and for developing novel targets for the treatment of addiction.New neuroscience techniques probing learning mechanisms demonstrated that different decision-making computations are mediated by distinct neural, circuit, and cellular systems.Computational biomarkers of decision-making functions are key for revealing the neurobiological mechanisms of addiction.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34920884</pmid><doi>10.1016/j.tins.2021.11.007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5231-0612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-2236
ispartof Trends in neurosciences (Regular ed.), 2022-02, Vol.45 (2), p.96-105
issn 0166-2236
1878-108X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8770604
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects amygdala
Animals
Behavior, Addictive
Decision Making - physiology
decision-making
dopamine
Humans
mGlu5
nucleus accumbens
orbitofrontal cortex
Reinforcement, Psychology
Substance-Related Disorders
title Reinforcement learning detuned in addiction: integrative and translational approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20detuned%20in%20addiction:%20integrative%20and%20translational%20approaches&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Groman,%20Stephanie%20M.&rft.date=2022-02-01&rft.volume=45&rft.issue=2&rft.spage=96&rft.epage=105&rft.pages=96-105&rft.issn=0166-2236&rft.eissn=1878-108X&rft_id=info:doi/10.1016/j.tins.2021.11.007&rft_dat=%3Celsevier_pubme%3ES0166223621002368%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34920884&rft_els_id=S0166223621002368&rfr_iscdi=true