EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-01, Vol.2022, p.5974634-18
Hauptverfasser: Abdi Alkareem Alyasseri, Zaid, Alomari, Osama Ahmad, Al-Betar, Mohammed Azmi, Awadallah, Mohammed A., Hameed Abdulkareem, Karrar, Abed Mohammed, Mazin, Kadry, Seifedine, Rajinikanth, V., Rho, Seungmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 5974634
container_title Computational intelligence and neuroscience
container_volume 2022
creator Abdi Alkareem Alyasseri, Zaid
Alomari, Osama Ahmad
Al-Betar, Mohammed Azmi
Awadallah, Mohammed A.
Hameed Abdulkareem, Karrar
Abed Mohammed, Mazin
Kadry, Seifedine
Rajinikanth, V.
Rho, Seungmin
description Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.
doi_str_mv 10.1155/2022/5974634
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697651938</galeid><sourcerecordid>A697651938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-ab33b97b24dd881c1c2c3b3cd997d687f61d9d148b8ba2687ba9db179cffe28f3</originalsourceid><addsrcrecordid>eNp9kstvEzEQxlcIREvhxhlZ4oIEobZ3_bogRVFoKxVRqfRs-bWJw8YO9m5Rr_3L622W8Dhwsj3z8zfzaaaqXiP4ESFCTjHE-JQI1tC6eVIdI8rZjGBWPz3cKTmqXuS8gZAwAvHz6qgmkAqG0XF1v1yegcVaheA6cO06Z3ofA7jJPqzAl6ErL70Zg7cOLAbzPcZCqWTWoI0JXLmUC31hXeh96416_KwyuEqxn6Su73LvtsAHcO5U16-NSg7Md7tuwvPL6lmruuxeTedJdfN5-W1xPrv8enaxmF_ODGlwP1O6rrVgGjfWco4MMtjUujZWCGaL0ZYiKyxquOZa4RLQSliNmDBt6zBv65Pq0153N-its6b0nFQnd8lvVbqTUXn5dyb4tVzFW8kZFZzyIvBuEkjxx-ByL7c-G9d1Krg4ZIkpxg2nEKKCvv0H3cQhhWLvkYKcIQ5_UyvVOelDG0tdM4rKeZkPJUjUY9kPe8qkmHNy7aFlBOW4AnJcATmtQMHf_GnzAP-aeQHe74G1D1b99P-XewDJQLpp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622087180</pqid></control><display><type>article</type><title>EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Abdi Alkareem Alyasseri, Zaid ; Alomari, Osama Ahmad ; Al-Betar, Mohammed Azmi ; Awadallah, Mohammed A. ; Hameed Abdulkareem, Karrar ; Abed Mohammed, Mazin ; Kadry, Seifedine ; Rajinikanth, V. ; Rho, Seungmin</creator><contributor>Ding, Bai Yuan ; Bai Yuan Ding</contributor><creatorcontrib>Abdi Alkareem Alyasseri, Zaid ; Alomari, Osama Ahmad ; Al-Betar, Mohammed Azmi ; Awadallah, Mohammed A. ; Hameed Abdulkareem, Karrar ; Abed Mohammed, Mazin ; Kadry, Seifedine ; Rajinikanth, V. ; Rho, Seungmin ; Ding, Bai Yuan ; Bai Yuan Ding</creatorcontrib><description>Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/5974634</identifier><identifier>PMID: 35069721</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Accuracy ; Algorithms ; Biometrics ; Brain-Computer Interfaces ; Channels ; Classification ; Critical point ; Delivery of Health Care ; EEG ; Electrodes ; Electroencephalography ; Feature selection ; Genetic algorithms ; Heuristic methods ; Humans ; Identification systems ; Mental task performance ; Optimization algorithms ; Optimization techniques ; Search algorithms ; Sensors ; Spoofing ; Visual signals ; Voice recognition ; Wavelet transforms</subject><ispartof>Computational intelligence and neuroscience, 2022-01, Vol.2022, p.5974634-18</ispartof><rights>Copyright © 2022 Zaid Abdi Alkareem Alyasseri et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Zaid Abdi Alkareem Alyasseri et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Zaid Abdi Alkareem Alyasseri et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-ab33b97b24dd881c1c2c3b3cd997d687f61d9d148b8ba2687ba9db179cffe28f3</citedby><cites>FETCH-LOGICAL-c542t-ab33b97b24dd881c1c2c3b3cd997d687f61d9d148b8ba2687ba9db179cffe28f3</cites><orcidid>0000-0001-9030-8102 ; 0000-0003-4228-9298 ; 0000-0002-7815-8946 ; 0000-0003-1980-1791 ; 0000-0003-3897-4460 ; 0000-0003-1936-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35069721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ding, Bai Yuan</contributor><contributor>Bai Yuan Ding</contributor><creatorcontrib>Abdi Alkareem Alyasseri, Zaid</creatorcontrib><creatorcontrib>Alomari, Osama Ahmad</creatorcontrib><creatorcontrib>Al-Betar, Mohammed Azmi</creatorcontrib><creatorcontrib>Awadallah, Mohammed A.</creatorcontrib><creatorcontrib>Hameed Abdulkareem, Karrar</creatorcontrib><creatorcontrib>Abed Mohammed, Mazin</creatorcontrib><creatorcontrib>Kadry, Seifedine</creatorcontrib><creatorcontrib>Rajinikanth, V.</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><title>EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biometrics</subject><subject>Brain-Computer Interfaces</subject><subject>Channels</subject><subject>Classification</subject><subject>Critical point</subject><subject>Delivery of Health Care</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Humans</subject><subject>Identification systems</subject><subject>Mental task performance</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Search algorithms</subject><subject>Sensors</subject><subject>Spoofing</subject><subject>Visual signals</subject><subject>Voice recognition</subject><subject>Wavelet transforms</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstvEzEQxlcIREvhxhlZ4oIEobZ3_bogRVFoKxVRqfRs-bWJw8YO9m5Rr_3L622W8Dhwsj3z8zfzaaaqXiP4ESFCTjHE-JQI1tC6eVIdI8rZjGBWPz3cKTmqXuS8gZAwAvHz6qgmkAqG0XF1v1yegcVaheA6cO06Z3ofA7jJPqzAl6ErL70Zg7cOLAbzPcZCqWTWoI0JXLmUC31hXeh96416_KwyuEqxn6Su73LvtsAHcO5U16-NSg7Md7tuwvPL6lmruuxeTedJdfN5-W1xPrv8enaxmF_ODGlwP1O6rrVgGjfWco4MMtjUujZWCGaL0ZYiKyxquOZa4RLQSliNmDBt6zBv65Pq0153N-its6b0nFQnd8lvVbqTUXn5dyb4tVzFW8kZFZzyIvBuEkjxx-ByL7c-G9d1Krg4ZIkpxg2nEKKCvv0H3cQhhWLvkYKcIQ5_UyvVOelDG0tdM4rKeZkPJUjUY9kPe8qkmHNy7aFlBOW4AnJcATmtQMHf_GnzAP-aeQHe74G1D1b99P-XewDJQLpp</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Abdi Alkareem Alyasseri, Zaid</creator><creator>Alomari, Osama Ahmad</creator><creator>Al-Betar, Mohammed Azmi</creator><creator>Awadallah, Mohammed A.</creator><creator>Hameed Abdulkareem, Karrar</creator><creator>Abed Mohammed, Mazin</creator><creator>Kadry, Seifedine</creator><creator>Rajinikanth, V.</creator><creator>Rho, Seungmin</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9030-8102</orcidid><orcidid>https://orcid.org/0000-0003-4228-9298</orcidid><orcidid>https://orcid.org/0000-0002-7815-8946</orcidid><orcidid>https://orcid.org/0000-0003-1980-1791</orcidid><orcidid>https://orcid.org/0000-0003-3897-4460</orcidid><orcidid>https://orcid.org/0000-0003-1936-6785</orcidid></search><sort><creationdate>20220112</creationdate><title>EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications</title><author>Abdi Alkareem Alyasseri, Zaid ; Alomari, Osama Ahmad ; Al-Betar, Mohammed Azmi ; Awadallah, Mohammed A. ; Hameed Abdulkareem, Karrar ; Abed Mohammed, Mazin ; Kadry, Seifedine ; Rajinikanth, V. ; Rho, Seungmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-ab33b97b24dd881c1c2c3b3cd997d687f61d9d148b8ba2687ba9db179cffe28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biometrics</topic><topic>Brain-Computer Interfaces</topic><topic>Channels</topic><topic>Classification</topic><topic>Critical point</topic><topic>Delivery of Health Care</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Humans</topic><topic>Identification systems</topic><topic>Mental task performance</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Search algorithms</topic><topic>Sensors</topic><topic>Spoofing</topic><topic>Visual signals</topic><topic>Voice recognition</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdi Alkareem Alyasseri, Zaid</creatorcontrib><creatorcontrib>Alomari, Osama Ahmad</creatorcontrib><creatorcontrib>Al-Betar, Mohammed Azmi</creatorcontrib><creatorcontrib>Awadallah, Mohammed A.</creatorcontrib><creatorcontrib>Hameed Abdulkareem, Karrar</creatorcontrib><creatorcontrib>Abed Mohammed, Mazin</creatorcontrib><creatorcontrib>Kadry, Seifedine</creatorcontrib><creatorcontrib>Rajinikanth, V.</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdi Alkareem Alyasseri, Zaid</au><au>Alomari, Osama Ahmad</au><au>Al-Betar, Mohammed Azmi</au><au>Awadallah, Mohammed A.</au><au>Hameed Abdulkareem, Karrar</au><au>Abed Mohammed, Mazin</au><au>Kadry, Seifedine</au><au>Rajinikanth, V.</au><au>Rho, Seungmin</au><au>Ding, Bai Yuan</au><au>Bai Yuan Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>2022</volume><spage>5974634</spage><epage>18</epage><pages>5974634-18</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35069721</pmid><doi>10.1155/2022/5974634</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9030-8102</orcidid><orcidid>https://orcid.org/0000-0003-4228-9298</orcidid><orcidid>https://orcid.org/0000-0002-7815-8946</orcidid><orcidid>https://orcid.org/0000-0003-1980-1791</orcidid><orcidid>https://orcid.org/0000-0003-3897-4460</orcidid><orcidid>https://orcid.org/0000-0003-1936-6785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-01, Vol.2022, p.5974634-18
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769868
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Biometrics
Brain-Computer Interfaces
Channels
Classification
Critical point
Delivery of Health Care
EEG
Electrodes
Electroencephalography
Feature selection
Genetic algorithms
Heuristic methods
Humans
Identification systems
Mental task performance
Optimization algorithms
Optimization techniques
Search algorithms
Sensors
Spoofing
Visual signals
Voice recognition
Wavelet transforms
title EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Channel%20Selection%20Using%20Multiobjective%20Cuckoo%20Search%20for%20Person%20Identification%20as%20Protection%20System%20in%20Healthcare%20Applications&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Abdi%20Alkareem%20Alyasseri,%20Zaid&rft.date=2022-01-12&rft.volume=2022&rft.spage=5974634&rft.epage=18&rft.pages=5974634-18&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/5974634&rft_dat=%3Cgale_pubme%3EA697651938%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622087180&rft_id=info:pmid/35069721&rft_galeid=A697651938&rfr_iscdi=true