An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology

Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2022-02, Vol.60 (2), p.365-391
Hauptverfasser: Waldmann, Moritz, Grosch, Alice, Witzler, Christian, Lehner, Matthias, Benda, Odo, Koch, Walter, Vogt, Klaus, Kohn, Christopher, Schröder, Wolfgang, Göbbert, Jens Henrik, Lintermann, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 2
container_start_page 365
container_title Medical & biological engineering & computing
container_volume 60
creator Waldmann, Moritz
Grosch, Alice
Witzler, Christian
Lehner, Matthias
Benda, Odo
Koch, Walter
Vogt, Klaus
Kohn, Christopher
Schröder, Wolfgang
Göbbert, Jens Henrik
Lintermann, Andreas
description Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation. Graphical Abstract Workflow for enhanced diagnostics in rhinology.
doi_str_mv 10.1007/s11517-021-02446-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614232009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EorcX_gALZIkNm8A4dpxkg1RVhSJVYgNLZDnO-F6XxC520qr_nim3lMeCheXXN2fO6DD2QsAbAdC-LUI0oq2gFrSU0pV8xDaiVXRVSj1mGxAKKhCiO2LHpVwCkU2tnrIjqfoG-r7bsK8nkaP36JZwjbyEeZ3sElKsuI0jn9GWNeOMcakGW3DkNyl_81O64T5ljnFvo6PXMdhdTGUJrvAQed6HmKa0u33Gnng7FXx-v2_Zl_dnn0_Pq4tPHz6enlxUTrVqqdoeGm0lyN5hrzy01ndCuGEYvFA1HQGVA02Wpfdjr8F32jdNB52SUslGbtm7g-7VOsw4OvKb7WSucphtvjXJBvP3Twx7s0vXpmu11tR4y17fC-T0fcWymDkUh9NkI6a1mFqTEVkDOdiyV_-gl2nNkcYjqoaefNZ3gvWBcjmVktE_mBFg7tIzh_QMZWJ-pmckFb38c4yHkl9xESAPQKGvuMP8u_d_ZH8AaXqloQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620906520</pqid></control><display><type>article</type><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><source>MEDLINE</source><source>Business Source Complete (EB_SDU_P3)</source><source>SpringerLink</source><creator>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</creator><creatorcontrib>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</creatorcontrib><description>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation. Graphical Abstract Workflow for enhanced diagnostics in rhinology.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02446-3</identifier><identifier>PMID: 34950998</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Computer Simulation ; Data processing ; Human Physiology ; Imaging ; Learning algorithms ; Machine Learning ; Medical imaging ; Mucosa ; Original ; Original Article ; Pipelining (computers) ; Radiology ; Simulation ; Software ; Workflow</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2022-02, Vol.60 (2), p.365-391</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</citedby><cites>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</cites><orcidid>0000-0001-7895-761X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02446-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02446-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34950998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waldmann, Moritz</creatorcontrib><creatorcontrib>Grosch, Alice</creatorcontrib><creatorcontrib>Witzler, Christian</creatorcontrib><creatorcontrib>Lehner, Matthias</creatorcontrib><creatorcontrib>Benda, Odo</creatorcontrib><creatorcontrib>Koch, Walter</creatorcontrib><creatorcontrib>Vogt, Klaus</creatorcontrib><creatorcontrib>Kohn, Christopher</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><creatorcontrib>Göbbert, Jens Henrik</creatorcontrib><creatorcontrib>Lintermann, Andreas</creatorcontrib><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation. Graphical Abstract Workflow for enhanced diagnostics in rhinology.</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Mucosa</subject><subject>Original</subject><subject>Original Article</subject><subject>Pipelining (computers)</subject><subject>Radiology</subject><subject>Simulation</subject><subject>Software</subject><subject>Workflow</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS0EorcX_gALZIkNm8A4dpxkg1RVhSJVYgNLZDnO-F6XxC520qr_nim3lMeCheXXN2fO6DD2QsAbAdC-LUI0oq2gFrSU0pV8xDaiVXRVSj1mGxAKKhCiO2LHpVwCkU2tnrIjqfoG-r7bsK8nkaP36JZwjbyEeZ3sElKsuI0jn9GWNeOMcakGW3DkNyl_81O64T5ljnFvo6PXMdhdTGUJrvAQed6HmKa0u33Gnng7FXx-v2_Zl_dnn0_Pq4tPHz6enlxUTrVqqdoeGm0lyN5hrzy01ndCuGEYvFA1HQGVA02Wpfdjr8F32jdNB52SUslGbtm7g-7VOsw4OvKb7WSucphtvjXJBvP3Twx7s0vXpmu11tR4y17fC-T0fcWymDkUh9NkI6a1mFqTEVkDOdiyV_-gl2nNkcYjqoaefNZ3gvWBcjmVktE_mBFg7tIzh_QMZWJ-pmckFb38c4yHkl9xESAPQKGvuMP8u_d_ZH8AaXqloQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Waldmann, Moritz</creator><creator>Grosch, Alice</creator><creator>Witzler, Christian</creator><creator>Lehner, Matthias</creator><creator>Benda, Odo</creator><creator>Koch, Walter</creator><creator>Vogt, Klaus</creator><creator>Kohn, Christopher</creator><creator>Schröder, Wolfgang</creator><creator>Göbbert, Jens Henrik</creator><creator>Lintermann, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7895-761X</orcidid></search><sort><creationdate>20220201</creationdate><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><author>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Mucosa</topic><topic>Original</topic><topic>Original Article</topic><topic>Pipelining (computers)</topic><topic>Radiology</topic><topic>Simulation</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waldmann, Moritz</creatorcontrib><creatorcontrib>Grosch, Alice</creatorcontrib><creatorcontrib>Witzler, Christian</creatorcontrib><creatorcontrib>Lehner, Matthias</creatorcontrib><creatorcontrib>Benda, Odo</creatorcontrib><creatorcontrib>Koch, Walter</creatorcontrib><creatorcontrib>Vogt, Klaus</creatorcontrib><creatorcontrib>Kohn, Christopher</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><creatorcontrib>Göbbert, Jens Henrik</creatorcontrib><creatorcontrib>Lintermann, Andreas</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waldmann, Moritz</au><au>Grosch, Alice</au><au>Witzler, Christian</au><au>Lehner, Matthias</au><au>Benda, Odo</au><au>Koch, Walter</au><au>Vogt, Klaus</au><au>Kohn, Christopher</au><au>Schröder, Wolfgang</au><au>Göbbert, Jens Henrik</au><au>Lintermann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>365</spage><epage>391</epage><pages>365-391</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation. Graphical Abstract Workflow for enhanced diagnostics in rhinology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34950998</pmid><doi>10.1007/s11517-021-02446-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7895-761X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2022-02, Vol.60 (2), p.365-391
issn 0140-0118
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766630
source MEDLINE; Business Source Complete (EB_SDU_P3); SpringerLink
subjects Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer Applications
Computer Simulation
Data processing
Human Physiology
Imaging
Learning algorithms
Machine Learning
Medical imaging
Mucosa
Original
Original Article
Pipelining (computers)
Radiology
Simulation
Software
Workflow
title An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20simulation-%20and%20measurement-based%20workflow%20for%20enhanced%20diagnostics%20in%20rhinology&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Waldmann,%20Moritz&rft.date=2022-02-01&rft.volume=60&rft.issue=2&rft.spage=365&rft.epage=391&rft.pages=365-391&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02446-3&rft_dat=%3Cproquest_pubme%3E2614232009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620906520&rft_id=info:pmid/34950998&rfr_iscdi=true