An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology
Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these m...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2022-02, Vol.60 (2), p.365-391 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Medical & biological engineering & computing |
container_volume | 60 |
creator | Waldmann, Moritz Grosch, Alice Witzler, Christian Lehner, Matthias Benda, Odo Koch, Walter Vogt, Klaus Kohn, Christopher Schröder, Wolfgang Göbbert, Jens Henrik Lintermann, Andreas |
description | Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
Graphical Abstract
Workflow for enhanced diagnostics in rhinology. |
doi_str_mv | 10.1007/s11517-021-02446-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614232009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EorcX_gALZIkNm8A4dpxkg1RVhSJVYgNLZDnO-F6XxC520qr_nim3lMeCheXXN2fO6DD2QsAbAdC-LUI0oq2gFrSU0pV8xDaiVXRVSj1mGxAKKhCiO2LHpVwCkU2tnrIjqfoG-r7bsK8nkaP36JZwjbyEeZ3sElKsuI0jn9GWNeOMcakGW3DkNyl_81O64T5ljnFvo6PXMdhdTGUJrvAQed6HmKa0u33Gnng7FXx-v2_Zl_dnn0_Pq4tPHz6enlxUTrVqqdoeGm0lyN5hrzy01ndCuGEYvFA1HQGVA02Wpfdjr8F32jdNB52SUslGbtm7g-7VOsw4OvKb7WSucphtvjXJBvP3Twx7s0vXpmu11tR4y17fC-T0fcWymDkUh9NkI6a1mFqTEVkDOdiyV_-gl2nNkcYjqoaefNZ3gvWBcjmVktE_mBFg7tIzh_QMZWJ-pmckFb38c4yHkl9xESAPQKGvuMP8u_d_ZH8AaXqloQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620906520</pqid></control><display><type>article</type><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><source>MEDLINE</source><source>Business Source Complete (EB_SDU_P3)</source><source>SpringerLink</source><creator>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</creator><creatorcontrib>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</creatorcontrib><description>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
Graphical Abstract
Workflow for enhanced diagnostics in rhinology.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02446-3</identifier><identifier>PMID: 34950998</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Computer Simulation ; Data processing ; Human Physiology ; Imaging ; Learning algorithms ; Machine Learning ; Medical imaging ; Mucosa ; Original ; Original Article ; Pipelining (computers) ; Radiology ; Simulation ; Software ; Workflow</subject><ispartof>Medical & biological engineering & computing, 2022-02, Vol.60 (2), p.365-391</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</citedby><cites>FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</cites><orcidid>0000-0001-7895-761X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02446-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02446-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34950998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waldmann, Moritz</creatorcontrib><creatorcontrib>Grosch, Alice</creatorcontrib><creatorcontrib>Witzler, Christian</creatorcontrib><creatorcontrib>Lehner, Matthias</creatorcontrib><creatorcontrib>Benda, Odo</creatorcontrib><creatorcontrib>Koch, Walter</creatorcontrib><creatorcontrib>Vogt, Klaus</creatorcontrib><creatorcontrib>Kohn, Christopher</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><creatorcontrib>Göbbert, Jens Henrik</creatorcontrib><creatorcontrib>Lintermann, Andreas</creatorcontrib><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
Graphical Abstract
Workflow for enhanced diagnostics in rhinology.</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Mucosa</subject><subject>Original</subject><subject>Original Article</subject><subject>Pipelining (computers)</subject><subject>Radiology</subject><subject>Simulation</subject><subject>Software</subject><subject>Workflow</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS0EorcX_gALZIkNm8A4dpxkg1RVhSJVYgNLZDnO-F6XxC520qr_nim3lMeCheXXN2fO6DD2QsAbAdC-LUI0oq2gFrSU0pV8xDaiVXRVSj1mGxAKKhCiO2LHpVwCkU2tnrIjqfoG-r7bsK8nkaP36JZwjbyEeZ3sElKsuI0jn9GWNeOMcakGW3DkNyl_81O64T5ljnFvo6PXMdhdTGUJrvAQed6HmKa0u33Gnng7FXx-v2_Zl_dnn0_Pq4tPHz6enlxUTrVqqdoeGm0lyN5hrzy01ndCuGEYvFA1HQGVA02Wpfdjr8F32jdNB52SUslGbtm7g-7VOsw4OvKb7WSucphtvjXJBvP3Twx7s0vXpmu11tR4y17fC-T0fcWymDkUh9NkI6a1mFqTEVkDOdiyV_-gl2nNkcYjqoaefNZ3gvWBcjmVktE_mBFg7tIzh_QMZWJ-pmckFb38c4yHkl9xESAPQKGvuMP8u_d_ZH8AaXqloQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Waldmann, Moritz</creator><creator>Grosch, Alice</creator><creator>Witzler, Christian</creator><creator>Lehner, Matthias</creator><creator>Benda, Odo</creator><creator>Koch, Walter</creator><creator>Vogt, Klaus</creator><creator>Kohn, Christopher</creator><creator>Schröder, Wolfgang</creator><creator>Göbbert, Jens Henrik</creator><creator>Lintermann, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7895-761X</orcidid></search><sort><creationdate>20220201</creationdate><title>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</title><author>Waldmann, Moritz ; Grosch, Alice ; Witzler, Christian ; Lehner, Matthias ; Benda, Odo ; Koch, Walter ; Vogt, Klaus ; Kohn, Christopher ; Schröder, Wolfgang ; Göbbert, Jens Henrik ; Lintermann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-79056a3039ce94f07af811cbbbf1428110e4c065093ffd960f86f558084334353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Mucosa</topic><topic>Original</topic><topic>Original Article</topic><topic>Pipelining (computers)</topic><topic>Radiology</topic><topic>Simulation</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waldmann, Moritz</creatorcontrib><creatorcontrib>Grosch, Alice</creatorcontrib><creatorcontrib>Witzler, Christian</creatorcontrib><creatorcontrib>Lehner, Matthias</creatorcontrib><creatorcontrib>Benda, Odo</creatorcontrib><creatorcontrib>Koch, Walter</creatorcontrib><creatorcontrib>Vogt, Klaus</creatorcontrib><creatorcontrib>Kohn, Christopher</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><creatorcontrib>Göbbert, Jens Henrik</creatorcontrib><creatorcontrib>Lintermann, Andreas</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waldmann, Moritz</au><au>Grosch, Alice</au><au>Witzler, Christian</au><au>Lehner, Matthias</au><au>Benda, Odo</au><au>Koch, Walter</au><au>Vogt, Klaus</au><au>Kohn, Christopher</au><au>Schröder, Wolfgang</au><au>Göbbert, Jens Henrik</au><au>Lintermann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>365</spage><epage>391</epage><pages>365-391</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.
Graphical Abstract
Workflow for enhanced diagnostics in rhinology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34950998</pmid><doi>10.1007/s11517-021-02446-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7895-761X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2022-02, Vol.60 (2), p.365-391 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766630 |
source | MEDLINE; Business Source Complete (EB_SDU_P3); SpringerLink |
subjects | Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications Computer Simulation Data processing Human Physiology Imaging Learning algorithms Machine Learning Medical imaging Mucosa Original Original Article Pipelining (computers) Radiology Simulation Software Workflow |
title | An effective simulation- and measurement-based workflow for enhanced diagnostics in rhinology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20simulation-%20and%20measurement-based%20workflow%20for%20enhanced%20diagnostics%20in%20rhinology&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Waldmann,%20Moritz&rft.date=2022-02-01&rft.volume=60&rft.issue=2&rft.spage=365&rft.epage=391&rft.pages=365-391&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02446-3&rft_dat=%3Cproquest_pubme%3E2614232009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620906520&rft_id=info:pmid/34950998&rfr_iscdi=true |