Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus

Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Endocrinology 2021-08, Vol.17 (8), p.455-467
Hauptverfasser: Yong, Jing, Johnson, James D., Arvan, Peter, Han, Jaeseok, Kaufman, Randal J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 8
container_start_page 455
container_title Nature reviews. Endocrinology
container_volume 17
creator Yong, Jing
Johnson, James D.
Arvan, Peter
Han, Jaeseok
Kaufman, Randal J.
description Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca 2+ storage organelle, generating Ca 2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM. This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed. Key points Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells. Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells. Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss. Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus. The therapeutic inhibition of genes that promote ER stress in β-cells (for example, CHOP ) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.
doi_str_mv 10.1038/s41574-021-00510-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8765009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550943859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhUVJyV_7Al0UQzbduB39WdYmEEKaFgKBkK6FLI8ThXstV5ILfa08SJ6pcm9602SRlQbON0dzOIR8oPCZAm-_JEGlEjUwWgNICrV4Q_apkrqWwNXOdmZ6jxykdAfQNEKJXbLHBW04cL1PLq9vMdoJ5-xdFaYpxDyPPntM1RBiNdnRRbSL-HBfO1ytqrOrKuWIKVV-rHpvO8wFXhfJ5zm9I28Hu0r4_vE9JD--nl2ffqsvLs-_n55c1K5ckGvVK2ACwPV20Nx2ijqBvaJLDMX6vmu4VlYIh67jdqCoe6YbJTohG-Qa-CE53vhOc7fG3uGYo12ZKfq1jb9NsN48V0Z_a27CL9OqRgLoYvDp0SCGnzOmbNY-LQHtiGFOhkkhWtUywQp69AK9C3McS7xCSdCCt3IxZBvKxZBSxGF7DAWz9GU2fZnSl_nblxFl6eP_MbYr_woqAN8AqUjjDcanv1-x_QN_oKIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550943859</pqid></control><display><type>article</type><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</creator><creatorcontrib>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</creatorcontrib><description>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca 2+ storage organelle, generating Ca 2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM. This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed. Key points Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells. Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells. Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss. Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus. The therapeutic inhibition of genes that promote ER stress in β-cells (for example, CHOP ) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</description><identifier>ISSN: 1759-5029</identifier><identifier>EISSN: 1759-5037</identifier><identifier>DOI: 10.1038/s41574-021-00510-4</identifier><identifier>PMID: 34163039</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/443/319/1642/137/773 ; 692/163/2743/2815 ; Animals ; Apoptosis ; Autoimmunity ; Beta cells ; Calcium (intracellular) ; Calcium signalling ; Cell death ; Cell survival ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - physiopathology ; Endocrinology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress - physiology ; Fatty liver ; Humans ; Hypoglycemic Agents - therapeutic use ; Insulin ; Insulin resistance ; Insulin secretion ; Insulin Secretion - physiology ; Insulin-Secreting Cells - physiology ; Liver diseases ; Medicine ; Medicine &amp; Public Health ; Metabolic syndrome ; Molecular Targeted Therapy - methods ; Molecular Targeted Therapy - trends ; Mutation ; Pancreas ; Proinsulin - metabolism ; Review Article ; Secretion</subject><ispartof>Nature reviews. Endocrinology, 2021-08, Vol.17 (8), p.455-467</ispartof><rights>Springer Nature Limited 2021</rights><rights>2021. Springer Nature Limited.</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</citedby><cites>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</cites><orcidid>0000-0002-4970-408X ; 0000-0002-7523-9433 ; 0000-0003-4277-316X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34163039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Jing</creatorcontrib><creatorcontrib>Johnson, James D.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><creatorcontrib>Han, Jaeseok</creatorcontrib><creatorcontrib>Kaufman, Randal J.</creatorcontrib><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><title>Nature reviews. Endocrinology</title><addtitle>Nat Rev Endocrinol</addtitle><addtitle>Nat Rev Endocrinol</addtitle><description>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca 2+ storage organelle, generating Ca 2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM. This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed. Key points Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells. Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells. Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss. Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus. The therapeutic inhibition of genes that promote ER stress in β-cells (for example, CHOP ) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</description><subject>631/443/319/1642/137/773</subject><subject>692/163/2743/2815</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autoimmunity</subject><subject>Beta cells</subject><subject>Calcium (intracellular)</subject><subject>Calcium signalling</subject><subject>Cell death</subject><subject>Cell survival</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Endocrinology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Fatty liver</subject><subject>Humans</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin secretion</subject><subject>Insulin Secretion - physiology</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Liver diseases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic syndrome</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Molecular Targeted Therapy - trends</subject><subject>Mutation</subject><subject>Pancreas</subject><subject>Proinsulin - metabolism</subject><subject>Review Article</subject><subject>Secretion</subject><issn>1759-5029</issn><issn>1759-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3TAQhUVJyV_7Al0UQzbduB39WdYmEEKaFgKBkK6FLI8ThXstV5ILfa08SJ6pcm9602SRlQbON0dzOIR8oPCZAm-_JEGlEjUwWgNICrV4Q_apkrqWwNXOdmZ6jxykdAfQNEKJXbLHBW04cL1PLq9vMdoJ5-xdFaYpxDyPPntM1RBiNdnRRbSL-HBfO1ytqrOrKuWIKVV-rHpvO8wFXhfJ5zm9I28Hu0r4_vE9JD--nl2ffqsvLs-_n55c1K5ckGvVK2ACwPV20Nx2ijqBvaJLDMX6vmu4VlYIh67jdqCoe6YbJTohG-Qa-CE53vhOc7fG3uGYo12ZKfq1jb9NsN48V0Z_a27CL9OqRgLoYvDp0SCGnzOmbNY-LQHtiGFOhkkhWtUywQp69AK9C3McS7xCSdCCt3IxZBvKxZBSxGF7DAWz9GU2fZnSl_nblxFl6eP_MbYr_woqAN8AqUjjDcanv1-x_QN_oKIs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yong, Jing</creator><creator>Johnson, James D.</creator><creator>Arvan, Peter</creator><creator>Han, Jaeseok</creator><creator>Kaufman, Randal J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4970-408X</orcidid><orcidid>https://orcid.org/0000-0002-7523-9433</orcidid><orcidid>https://orcid.org/0000-0003-4277-316X</orcidid></search><sort><creationdate>20210801</creationdate><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><author>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/443/319/1642/137/773</topic><topic>692/163/2743/2815</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autoimmunity</topic><topic>Beta cells</topic><topic>Calcium (intracellular)</topic><topic>Calcium signalling</topic><topic>Cell death</topic><topic>Cell survival</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Endocrinology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Fatty liver</topic><topic>Humans</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin secretion</topic><topic>Insulin Secretion - physiology</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Liver diseases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic syndrome</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Molecular Targeted Therapy - trends</topic><topic>Mutation</topic><topic>Pancreas</topic><topic>Proinsulin - metabolism</topic><topic>Review Article</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Jing</creatorcontrib><creatorcontrib>Johnson, James D.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><creatorcontrib>Han, Jaeseok</creatorcontrib><creatorcontrib>Kaufman, Randal J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Jing</au><au>Johnson, James D.</au><au>Arvan, Peter</au><au>Han, Jaeseok</au><au>Kaufman, Randal J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</atitle><jtitle>Nature reviews. Endocrinology</jtitle><stitle>Nat Rev Endocrinol</stitle><addtitle>Nat Rev Endocrinol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>455</spage><epage>467</epage><pages>455-467</pages><issn>1759-5029</issn><eissn>1759-5037</eissn><abstract>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca 2+ storage organelle, generating Ca 2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM. This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed. Key points Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells. Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells. Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss. Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus. The therapeutic inhibition of genes that promote ER stress in β-cells (for example, CHOP ) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34163039</pmid><doi>10.1038/s41574-021-00510-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4970-408X</orcidid><orcidid>https://orcid.org/0000-0002-7523-9433</orcidid><orcidid>https://orcid.org/0000-0003-4277-316X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-5029
ispartof Nature reviews. Endocrinology, 2021-08, Vol.17 (8), p.455-467
issn 1759-5029
1759-5037
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8765009
source MEDLINE; Alma/SFX Local Collection
subjects 631/443/319/1642/137/773
692/163/2743/2815
Animals
Apoptosis
Autoimmunity
Beta cells
Calcium (intracellular)
Calcium signalling
Cell death
Cell survival
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - physiopathology
Endocrinology
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress - physiology
Fatty liver
Humans
Hypoglycemic Agents - therapeutic use
Insulin
Insulin resistance
Insulin secretion
Insulin Secretion - physiology
Insulin-Secreting Cells - physiology
Liver diseases
Medicine
Medicine & Public Health
Metabolic syndrome
Molecular Targeted Therapy - methods
Molecular Targeted Therapy - trends
Mutation
Pancreas
Proinsulin - metabolism
Review Article
Secretion
title Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20opportunities%20for%20pancreatic%20%CE%B2-cell%20ER%20stress%20in%20diabetes%20mellitus&rft.jtitle=Nature%20reviews.%20Endocrinology&rft.au=Yong,%20Jing&rft.date=2021-08-01&rft.volume=17&rft.issue=8&rft.spage=455&rft.epage=467&rft.pages=455-467&rft.issn=1759-5029&rft.eissn=1759-5037&rft_id=info:doi/10.1038/s41574-021-00510-4&rft_dat=%3Cproquest_pubme%3E2550943859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550943859&rft_id=info:pmid/34163039&rfr_iscdi=true