Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus
Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Endocrinology 2021-08, Vol.17 (8), p.455-467 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | 8 |
container_start_page | 455 |
container_title | Nature reviews. Endocrinology |
container_volume | 17 |
creator | Yong, Jing Johnson, James D. Arvan, Peter Han, Jaeseok Kaufman, Randal J. |
description | Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca
2+
storage organelle, generating Ca
2+
signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed.
Key points
Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells.
Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells.
Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss.
Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus.
The therapeutic inhibition of genes that promote ER stress in β-cells (for example,
CHOP
) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration. |
doi_str_mv | 10.1038/s41574-021-00510-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8765009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550943859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhUVJyV_7Al0UQzbduB39WdYmEEKaFgKBkK6FLI8ThXstV5ILfa08SJ6pcm9602SRlQbON0dzOIR8oPCZAm-_JEGlEjUwWgNICrV4Q_apkrqWwNXOdmZ6jxykdAfQNEKJXbLHBW04cL1PLq9vMdoJ5-xdFaYpxDyPPntM1RBiNdnRRbSL-HBfO1ytqrOrKuWIKVV-rHpvO8wFXhfJ5zm9I28Hu0r4_vE9JD--nl2ffqsvLs-_n55c1K5ckGvVK2ACwPV20Nx2ijqBvaJLDMX6vmu4VlYIh67jdqCoe6YbJTohG-Qa-CE53vhOc7fG3uGYo12ZKfq1jb9NsN48V0Z_a27CL9OqRgLoYvDp0SCGnzOmbNY-LQHtiGFOhkkhWtUywQp69AK9C3McS7xCSdCCt3IxZBvKxZBSxGF7DAWz9GU2fZnSl_nblxFl6eP_MbYr_woqAN8AqUjjDcanv1-x_QN_oKIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550943859</pqid></control><display><type>article</type><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</creator><creatorcontrib>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</creatorcontrib><description>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca
2+
storage organelle, generating Ca
2+
signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed.
Key points
Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells.
Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells.
Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss.
Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus.
The therapeutic inhibition of genes that promote ER stress in β-cells (for example,
CHOP
) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</description><identifier>ISSN: 1759-5029</identifier><identifier>EISSN: 1759-5037</identifier><identifier>DOI: 10.1038/s41574-021-00510-4</identifier><identifier>PMID: 34163039</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/443/319/1642/137/773 ; 692/163/2743/2815 ; Animals ; Apoptosis ; Autoimmunity ; Beta cells ; Calcium (intracellular) ; Calcium signalling ; Cell death ; Cell survival ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - physiopathology ; Endocrinology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress - physiology ; Fatty liver ; Humans ; Hypoglycemic Agents - therapeutic use ; Insulin ; Insulin resistance ; Insulin secretion ; Insulin Secretion - physiology ; Insulin-Secreting Cells - physiology ; Liver diseases ; Medicine ; Medicine & Public Health ; Metabolic syndrome ; Molecular Targeted Therapy - methods ; Molecular Targeted Therapy - trends ; Mutation ; Pancreas ; Proinsulin - metabolism ; Review Article ; Secretion</subject><ispartof>Nature reviews. Endocrinology, 2021-08, Vol.17 (8), p.455-467</ispartof><rights>Springer Nature Limited 2021</rights><rights>2021. Springer Nature Limited.</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</citedby><cites>FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</cites><orcidid>0000-0002-4970-408X ; 0000-0002-7523-9433 ; 0000-0003-4277-316X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34163039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Jing</creatorcontrib><creatorcontrib>Johnson, James D.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><creatorcontrib>Han, Jaeseok</creatorcontrib><creatorcontrib>Kaufman, Randal J.</creatorcontrib><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><title>Nature reviews. Endocrinology</title><addtitle>Nat Rev Endocrinol</addtitle><addtitle>Nat Rev Endocrinol</addtitle><description>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca
2+
storage organelle, generating Ca
2+
signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed.
Key points
Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells.
Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells.
Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss.
Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus.
The therapeutic inhibition of genes that promote ER stress in β-cells (for example,
CHOP
) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</description><subject>631/443/319/1642/137/773</subject><subject>692/163/2743/2815</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autoimmunity</subject><subject>Beta cells</subject><subject>Calcium (intracellular)</subject><subject>Calcium signalling</subject><subject>Cell death</subject><subject>Cell survival</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Endocrinology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Fatty liver</subject><subject>Humans</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin secretion</subject><subject>Insulin Secretion - physiology</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Liver diseases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic syndrome</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Molecular Targeted Therapy - trends</subject><subject>Mutation</subject><subject>Pancreas</subject><subject>Proinsulin - metabolism</subject><subject>Review Article</subject><subject>Secretion</subject><issn>1759-5029</issn><issn>1759-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3TAQhUVJyV_7Al0UQzbduB39WdYmEEKaFgKBkK6FLI8ThXstV5ILfa08SJ6pcm9602SRlQbON0dzOIR8oPCZAm-_JEGlEjUwWgNICrV4Q_apkrqWwNXOdmZ6jxykdAfQNEKJXbLHBW04cL1PLq9vMdoJ5-xdFaYpxDyPPntM1RBiNdnRRbSL-HBfO1ytqrOrKuWIKVV-rHpvO8wFXhfJ5zm9I28Hu0r4_vE9JD--nl2ffqsvLs-_n55c1K5ckGvVK2ACwPV20Nx2ijqBvaJLDMX6vmu4VlYIh67jdqCoe6YbJTohG-Qa-CE53vhOc7fG3uGYo12ZKfq1jb9NsN48V0Z_a27CL9OqRgLoYvDp0SCGnzOmbNY-LQHtiGFOhkkhWtUywQp69AK9C3McS7xCSdCCt3IxZBvKxZBSxGF7DAWz9GU2fZnSl_nblxFl6eP_MbYr_woqAN8AqUjjDcanv1-x_QN_oKIs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yong, Jing</creator><creator>Johnson, James D.</creator><creator>Arvan, Peter</creator><creator>Han, Jaeseok</creator><creator>Kaufman, Randal J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4970-408X</orcidid><orcidid>https://orcid.org/0000-0002-7523-9433</orcidid><orcidid>https://orcid.org/0000-0003-4277-316X</orcidid></search><sort><creationdate>20210801</creationdate><title>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</title><author>Yong, Jing ; Johnson, James D. ; Arvan, Peter ; Han, Jaeseok ; Kaufman, Randal J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7d702400cdaf93ab71c4ed71051072ddb6397a44cecb3af1e9d29674b456e3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/443/319/1642/137/773</topic><topic>692/163/2743/2815</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autoimmunity</topic><topic>Beta cells</topic><topic>Calcium (intracellular)</topic><topic>Calcium signalling</topic><topic>Cell death</topic><topic>Cell survival</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Endocrinology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Fatty liver</topic><topic>Humans</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin secretion</topic><topic>Insulin Secretion - physiology</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Liver diseases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic syndrome</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Molecular Targeted Therapy - trends</topic><topic>Mutation</topic><topic>Pancreas</topic><topic>Proinsulin - metabolism</topic><topic>Review Article</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Jing</creatorcontrib><creatorcontrib>Johnson, James D.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><creatorcontrib>Han, Jaeseok</creatorcontrib><creatorcontrib>Kaufman, Randal J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Jing</au><au>Johnson, James D.</au><au>Arvan, Peter</au><au>Han, Jaeseok</au><au>Kaufman, Randal J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus</atitle><jtitle>Nature reviews. Endocrinology</jtitle><stitle>Nat Rev Endocrinol</stitle><addtitle>Nat Rev Endocrinol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>455</spage><epage>467</epage><pages>455-467</pages><issn>1759-5029</issn><eissn>1759-5037</eissn><abstract>Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca
2+
storage organelle, generating Ca
2+
signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
This Review summarizes the mechanisms by which endoplasmic reticulum (ER) stress contributes to β-cell dysfunction and cell death in monogenic diabetes and type 2 diabetes mellitus (T2DM). In addition, the potential therapeutic strategies for T2DM and metabolic syndrome that target ER stress in β-cells are discussed.
Key points
Physiological and chronic endoplasmic reticulum (ER) ‘stress’ exists in healthy β-cells.
Adaptive unfolded protein response signalling via chaperones maintains ER protein folding homeostasis in healthy β-cells.
Gene mutations in maturity-onset diabetes of the young exacerbate physiological ER stress, which causes β-cell loss.
Proinsulin is prone to misfolding and increased insulin production can exacerbate physiological ER stress on the path to type 2 diabetes mellitus.
The therapeutic inhibition of genes that promote ER stress in β-cells (for example,
CHOP
) might reduce the disease burden for patients with type 2 diabetes mellitus and is worthy of further exploration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34163039</pmid><doi>10.1038/s41574-021-00510-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4970-408X</orcidid><orcidid>https://orcid.org/0000-0002-7523-9433</orcidid><orcidid>https://orcid.org/0000-0003-4277-316X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-5029 |
ispartof | Nature reviews. Endocrinology, 2021-08, Vol.17 (8), p.455-467 |
issn | 1759-5029 1759-5037 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8765009 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 631/443/319/1642/137/773 692/163/2743/2815 Animals Apoptosis Autoimmunity Beta cells Calcium (intracellular) Calcium signalling Cell death Cell survival Diabetes Diabetes mellitus (insulin dependent) Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - physiopathology Endocrinology Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum Stress - physiology Fatty liver Humans Hypoglycemic Agents - therapeutic use Insulin Insulin resistance Insulin secretion Insulin Secretion - physiology Insulin-Secreting Cells - physiology Liver diseases Medicine Medicine & Public Health Metabolic syndrome Molecular Targeted Therapy - methods Molecular Targeted Therapy - trends Mutation Pancreas Proinsulin - metabolism Review Article Secretion |
title | Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20opportunities%20for%20pancreatic%20%CE%B2-cell%20ER%20stress%20in%20diabetes%20mellitus&rft.jtitle=Nature%20reviews.%20Endocrinology&rft.au=Yong,%20Jing&rft.date=2021-08-01&rft.volume=17&rft.issue=8&rft.spage=455&rft.epage=467&rft.pages=455-467&rft.issn=1759-5029&rft.eissn=1759-5037&rft_id=info:doi/10.1038/s41574-021-00510-4&rft_dat=%3Cproquest_pubme%3E2550943859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550943859&rft_id=info:pmid/34163039&rfr_iscdi=true |