Influence function methods to assess the effectiveness of influenza vaccine with survey data

Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health services research 2022-02, Vol.57 (1), p.200-211
Hauptverfasser: Tian, Mingmei, Yu, Jihnhee, Lillvis, Denise F., Vexler, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 200
container_title Health services research
container_volume 57
creator Tian, Mingmei
Yu, Jihnhee
Lillvis, Denise F.
Vexler, Albert
description Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions. Data collection/Extraction methods Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel. Principal findings Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures. Conclusions We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.
doi_str_mv 10.1111/1475-6773.13895
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A694379453</galeid><sourcerecordid>A694379453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rh67Z0UBFGwu_lq0twIy7DuLgws-HEnhDQ9nWbpJLtNO-v4603tOk5FMDcJOc95T3LOmyQvMTrBcZ1iJvKMC0FPMC1k_ihZ7G8eJwuEsMgkJuwoeRbCDUKooAV7mhxRxhmVjCySb1eubgdwBtJ6cKa33qUb6BtfhbT3qQ4BQjw1kEJdQ4xvwY03vk7tlPlDp1ttjHWQ3tu-ScPQbWGXVrrXz5MntW4DvHjYj5OvH8-_LC-z1fXF1fJslZlcojzTvOZYGGRiAcTK-EaR40JUZUkEEbKSgmhDSomgRIwYITkzFa55jituGCX0OPkw6d4O5QYqA67vdKtuO7vR3U55bdU84myj1n6rCsEpkSIKvH0Q6PzdAKFXGxsMtK124IegSF7gAueMFhF9_Rd644fOxe8pwglCUhZY_qHWugUVO-VjXTOKqjMuGRWS5TRS72aU8a6H7_1aDyGo4mI1Z7N_sca3LaxBxX4ur-f8mwO-Ad32TfDtME44zMH3B2A5BDsO2Lpg100fprfM8NMJN50PoYN632aM1OhJNTpQjQ5UvzwZM14dTmfP_zZhBPgE3NsWdv_TU5fnnz9Nyj8BbfXo8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620099819</pqid></control><display><type>article</type><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</creator><creatorcontrib>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</creatorcontrib><description>Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions. Data collection/Extraction methods Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel. Principal findings Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures. Conclusions We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</description><identifier>ISSN: 0017-9124</identifier><identifier>EISSN: 1475-6773</identifier><identifier>DOI: 10.1111/1475-6773.13895</identifier><identifier>PMID: 34643942</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Balancing ; biostatistical methods ; Case-Control Studies ; Computer Simulation ; Contingency ; Data analysis ; Data collection ; Effectiveness ; Epidemics - prevention &amp; control ; Estimates ; Expenditures ; Extraction ; Female ; Generalized linear models ; Health care expenditures ; Health services ; Health surveys ; healthcare surveys ; Humans ; Influence functions ; Influenza ; Influenza vaccines ; Influenza Vaccines - therapeutic use ; Influenza, Human - epidemiology ; Influenza, Human - prevention &amp; control ; Linear analysis ; Male ; medical expenditures ; Medical research ; Medicine, Experimental ; Methods ; Middle Aged ; Performance evaluation ; Polls &amp; surveys ; Prevention ; Research Design ; risk assessment ; Risk Factors ; Robustness ; Simulation ; Statistical analysis ; Statistical models ; Vaccines</subject><ispartof>Health services research, 2022-02, Vol.57 (1), p.200-211</ispartof><rights>2021 Health Research and Educational Trust</rights><rights>2021 Health Research and Educational Trust.</rights><rights>COPYRIGHT 2022 Health Research and Educational Trust</rights><rights>2022 Health Research and Educational Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</cites><orcidid>0000-0002-6866-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763297/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763297/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,30976,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34643942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Mingmei</creatorcontrib><creatorcontrib>Yu, Jihnhee</creatorcontrib><creatorcontrib>Lillvis, Denise F.</creatorcontrib><creatorcontrib>Vexler, Albert</creatorcontrib><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><title>Health services research</title><addtitle>Health Serv Res</addtitle><description>Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions. Data collection/Extraction methods Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel. Principal findings Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures. Conclusions We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</description><subject>Adult</subject><subject>Aged</subject><subject>Balancing</subject><subject>biostatistical methods</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Contingency</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Effectiveness</subject><subject>Epidemics - prevention &amp; control</subject><subject>Estimates</subject><subject>Expenditures</subject><subject>Extraction</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Health care expenditures</subject><subject>Health services</subject><subject>Health surveys</subject><subject>healthcare surveys</subject><subject>Humans</subject><subject>Influence functions</subject><subject>Influenza</subject><subject>Influenza vaccines</subject><subject>Influenza Vaccines - therapeutic use</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - prevention &amp; control</subject><subject>Linear analysis</subject><subject>Male</subject><subject>medical expenditures</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Performance evaluation</subject><subject>Polls &amp; surveys</subject><subject>Prevention</subject><subject>Research Design</subject><subject>risk assessment</subject><subject>Risk Factors</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Vaccines</subject><issn>0017-9124</issn><issn>1475-6773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkl2L1DAUhoso7rh67Z0UBFGwu_lq0twIy7DuLgws-HEnhDQ9nWbpJLtNO-v4603tOk5FMDcJOc95T3LOmyQvMTrBcZ1iJvKMC0FPMC1k_ihZ7G8eJwuEsMgkJuwoeRbCDUKooAV7mhxRxhmVjCySb1eubgdwBtJ6cKa33qUb6BtfhbT3qQ4BQjw1kEJdQ4xvwY03vk7tlPlDp1ttjHWQ3tu-ScPQbWGXVrrXz5MntW4DvHjYj5OvH8-_LC-z1fXF1fJslZlcojzTvOZYGGRiAcTK-EaR40JUZUkEEbKSgmhDSomgRIwYITkzFa55jituGCX0OPkw6d4O5QYqA67vdKtuO7vR3U55bdU84myj1n6rCsEpkSIKvH0Q6PzdAKFXGxsMtK124IegSF7gAueMFhF9_Rd644fOxe8pwglCUhZY_qHWugUVO-VjXTOKqjMuGRWS5TRS72aU8a6H7_1aDyGo4mI1Z7N_sca3LaxBxX4ur-f8mwO-Ad32TfDtME44zMH3B2A5BDsO2Lpg100fprfM8NMJN50PoYN632aM1OhJNTpQjQ5UvzwZM14dTmfP_zZhBPgE3NsWdv_TU5fnnz9Nyj8BbfXo8w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Tian, Mingmei</creator><creator>Yu, Jihnhee</creator><creator>Lillvis, Denise F.</creator><creator>Vexler, Albert</creator><general>Blackwell Publishing Ltd</general><general>Health Research and Educational Trust</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>7QJ</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6866-5928</orcidid></search><sort><creationdate>202202</creationdate><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><author>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Balancing</topic><topic>biostatistical methods</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Contingency</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Effectiveness</topic><topic>Epidemics - prevention &amp; control</topic><topic>Estimates</topic><topic>Expenditures</topic><topic>Extraction</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Health care expenditures</topic><topic>Health services</topic><topic>Health surveys</topic><topic>healthcare surveys</topic><topic>Humans</topic><topic>Influence functions</topic><topic>Influenza</topic><topic>Influenza vaccines</topic><topic>Influenza Vaccines - therapeutic use</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - prevention &amp; control</topic><topic>Linear analysis</topic><topic>Male</topic><topic>medical expenditures</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Performance evaluation</topic><topic>Polls &amp; surveys</topic><topic>Prevention</topic><topic>Research Design</topic><topic>risk assessment</topic><topic>Risk Factors</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Mingmei</creatorcontrib><creatorcontrib>Yu, Jihnhee</creatorcontrib><creatorcontrib>Lillvis, Denise F.</creatorcontrib><creatorcontrib>Vexler, Albert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Mingmei</au><au>Yu, Jihnhee</au><au>Lillvis, Denise F.</au><au>Vexler, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence function methods to assess the effectiveness of influenza vaccine with survey data</atitle><jtitle>Health services research</jtitle><addtitle>Health Serv Res</addtitle><date>2022-02</date><risdate>2022</risdate><volume>57</volume><issue>1</issue><spage>200</spage><epage>211</epage><pages>200-211</pages><issn>0017-9124</issn><eissn>1475-6773</eissn><abstract>Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions. Data collection/Extraction methods Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel. Principal findings Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures. Conclusions We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>34643942</pmid><doi>10.1111/1475-6773.13895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6866-5928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9124
ispartof Health services research, 2022-02, Vol.57 (1), p.200-211
issn 0017-9124
1475-6773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763297
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Aged
Balancing
biostatistical methods
Case-Control Studies
Computer Simulation
Contingency
Data analysis
Data collection
Effectiveness
Epidemics - prevention & control
Estimates
Expenditures
Extraction
Female
Generalized linear models
Health care expenditures
Health services
Health surveys
healthcare surveys
Humans
Influence functions
Influenza
Influenza vaccines
Influenza Vaccines - therapeutic use
Influenza, Human - epidemiology
Influenza, Human - prevention & control
Linear analysis
Male
medical expenditures
Medical research
Medicine, Experimental
Methods
Middle Aged
Performance evaluation
Polls & surveys
Prevention
Research Design
risk assessment
Risk Factors
Robustness
Simulation
Statistical analysis
Statistical models
Vaccines
title Influence function methods to assess the effectiveness of influenza vaccine with survey data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20function%20methods%20to%20assess%20the%20effectiveness%20of%20influenza%20vaccine%20with%20survey%20data&rft.jtitle=Health%20services%20research&rft.au=Tian,%20Mingmei&rft.date=2022-02&rft.volume=57&rft.issue=1&rft.spage=200&rft.epage=211&rft.pages=200-211&rft.issn=0017-9124&rft.eissn=1475-6773&rft_id=info:doi/10.1111/1475-6773.13895&rft_dat=%3Cgale_pubme%3EA694379453%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620099819&rft_id=info:pmid/34643942&rft_galeid=A694379453&rfr_iscdi=true