Influence function methods to assess the effectiveness of influenza vaccine with survey data
Objective To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions. Data sources We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS). Study design We in...
Gespeichert in:
Veröffentlicht in: | Health services research 2022-02, Vol.57 (1), p.200-211 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 1 |
container_start_page | 200 |
container_title | Health services research |
container_volume | 57 |
creator | Tian, Mingmei Yu, Jihnhee Lillvis, Denise F. Vexler, Albert |
description | Objective
To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions.
Data sources
We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS).
Study design
We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions.
Data collection/Extraction methods
Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel.
Principal findings
Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures.
Conclusions
We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced. |
doi_str_mv | 10.1111/1475-6773.13895 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A694379453</galeid><sourcerecordid>A694379453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rh67Z0UBFGwu_lq0twIy7DuLgws-HEnhDQ9nWbpJLtNO-v4603tOk5FMDcJOc95T3LOmyQvMTrBcZ1iJvKMC0FPMC1k_ihZ7G8eJwuEsMgkJuwoeRbCDUKooAV7mhxRxhmVjCySb1eubgdwBtJ6cKa33qUb6BtfhbT3qQ4BQjw1kEJdQ4xvwY03vk7tlPlDp1ttjHWQ3tu-ScPQbWGXVrrXz5MntW4DvHjYj5OvH8-_LC-z1fXF1fJslZlcojzTvOZYGGRiAcTK-EaR40JUZUkEEbKSgmhDSomgRIwYITkzFa55jituGCX0OPkw6d4O5QYqA67vdKtuO7vR3U55bdU84myj1n6rCsEpkSIKvH0Q6PzdAKFXGxsMtK124IegSF7gAueMFhF9_Rd644fOxe8pwglCUhZY_qHWugUVO-VjXTOKqjMuGRWS5TRS72aU8a6H7_1aDyGo4mI1Z7N_sca3LaxBxX4ur-f8mwO-Ad32TfDtME44zMH3B2A5BDsO2Lpg100fprfM8NMJN50PoYN632aM1OhJNTpQjQ5UvzwZM14dTmfP_zZhBPgE3NsWdv_TU5fnnz9Nyj8BbfXo8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620099819</pqid></control><display><type>article</type><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</creator><creatorcontrib>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</creatorcontrib><description>Objective
To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions.
Data sources
We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS).
Study design
We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions.
Data collection/Extraction methods
Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel.
Principal findings
Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures.
Conclusions
We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</description><identifier>ISSN: 0017-9124</identifier><identifier>EISSN: 1475-6773</identifier><identifier>DOI: 10.1111/1475-6773.13895</identifier><identifier>PMID: 34643942</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Balancing ; biostatistical methods ; Case-Control Studies ; Computer Simulation ; Contingency ; Data analysis ; Data collection ; Effectiveness ; Epidemics - prevention & control ; Estimates ; Expenditures ; Extraction ; Female ; Generalized linear models ; Health care expenditures ; Health services ; Health surveys ; healthcare surveys ; Humans ; Influence functions ; Influenza ; Influenza vaccines ; Influenza Vaccines - therapeutic use ; Influenza, Human - epidemiology ; Influenza, Human - prevention & control ; Linear analysis ; Male ; medical expenditures ; Medical research ; Medicine, Experimental ; Methods ; Middle Aged ; Performance evaluation ; Polls & surveys ; Prevention ; Research Design ; risk assessment ; Risk Factors ; Robustness ; Simulation ; Statistical analysis ; Statistical models ; Vaccines</subject><ispartof>Health services research, 2022-02, Vol.57 (1), p.200-211</ispartof><rights>2021 Health Research and Educational Trust</rights><rights>2021 Health Research and Educational Trust.</rights><rights>COPYRIGHT 2022 Health Research and Educational Trust</rights><rights>2022 Health Research and Educational Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</cites><orcidid>0000-0002-6866-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763297/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763297/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,30976,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34643942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Mingmei</creatorcontrib><creatorcontrib>Yu, Jihnhee</creatorcontrib><creatorcontrib>Lillvis, Denise F.</creatorcontrib><creatorcontrib>Vexler, Albert</creatorcontrib><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><title>Health services research</title><addtitle>Health Serv Res</addtitle><description>Objective
To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions.
Data sources
We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS).
Study design
We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions.
Data collection/Extraction methods
Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel.
Principal findings
Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures.
Conclusions
We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</description><subject>Adult</subject><subject>Aged</subject><subject>Balancing</subject><subject>biostatistical methods</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Contingency</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Effectiveness</subject><subject>Epidemics - prevention & control</subject><subject>Estimates</subject><subject>Expenditures</subject><subject>Extraction</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Health care expenditures</subject><subject>Health services</subject><subject>Health surveys</subject><subject>healthcare surveys</subject><subject>Humans</subject><subject>Influence functions</subject><subject>Influenza</subject><subject>Influenza vaccines</subject><subject>Influenza Vaccines - therapeutic use</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - prevention & control</subject><subject>Linear analysis</subject><subject>Male</subject><subject>medical expenditures</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Performance evaluation</subject><subject>Polls & surveys</subject><subject>Prevention</subject><subject>Research Design</subject><subject>risk assessment</subject><subject>Risk Factors</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Vaccines</subject><issn>0017-9124</issn><issn>1475-6773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkl2L1DAUhoso7rh67Z0UBFGwu_lq0twIy7DuLgws-HEnhDQ9nWbpJLtNO-v4603tOk5FMDcJOc95T3LOmyQvMTrBcZ1iJvKMC0FPMC1k_ihZ7G8eJwuEsMgkJuwoeRbCDUKooAV7mhxRxhmVjCySb1eubgdwBtJ6cKa33qUb6BtfhbT3qQ4BQjw1kEJdQ4xvwY03vk7tlPlDp1ttjHWQ3tu-ScPQbWGXVrrXz5MntW4DvHjYj5OvH8-_LC-z1fXF1fJslZlcojzTvOZYGGRiAcTK-EaR40JUZUkEEbKSgmhDSomgRIwYITkzFa55jituGCX0OPkw6d4O5QYqA67vdKtuO7vR3U55bdU84myj1n6rCsEpkSIKvH0Q6PzdAKFXGxsMtK124IegSF7gAueMFhF9_Rd644fOxe8pwglCUhZY_qHWugUVO-VjXTOKqjMuGRWS5TRS72aU8a6H7_1aDyGo4mI1Z7N_sca3LaxBxX4ur-f8mwO-Ad32TfDtME44zMH3B2A5BDsO2Lpg100fprfM8NMJN50PoYN632aM1OhJNTpQjQ5UvzwZM14dTmfP_zZhBPgE3NsWdv_TU5fnnz9Nyj8BbfXo8w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Tian, Mingmei</creator><creator>Yu, Jihnhee</creator><creator>Lillvis, Denise F.</creator><creator>Vexler, Albert</creator><general>Blackwell Publishing Ltd</general><general>Health Research and Educational Trust</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>7QJ</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6866-5928</orcidid></search><sort><creationdate>202202</creationdate><title>Influence function methods to assess the effectiveness of influenza vaccine with survey data</title><author>Tian, Mingmei ; Yu, Jihnhee ; Lillvis, Denise F. ; Vexler, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5905-a6f617c0cfec04b83875187dbb27279d972ac2b90eb042c7964cd1f651d6c4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Balancing</topic><topic>biostatistical methods</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Contingency</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Effectiveness</topic><topic>Epidemics - prevention & control</topic><topic>Estimates</topic><topic>Expenditures</topic><topic>Extraction</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Health care expenditures</topic><topic>Health services</topic><topic>Health surveys</topic><topic>healthcare surveys</topic><topic>Humans</topic><topic>Influence functions</topic><topic>Influenza</topic><topic>Influenza vaccines</topic><topic>Influenza Vaccines - therapeutic use</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - prevention & control</topic><topic>Linear analysis</topic><topic>Male</topic><topic>medical expenditures</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Performance evaluation</topic><topic>Polls & surveys</topic><topic>Prevention</topic><topic>Research Design</topic><topic>risk assessment</topic><topic>Risk Factors</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Mingmei</creatorcontrib><creatorcontrib>Yu, Jihnhee</creatorcontrib><creatorcontrib>Lillvis, Denise F.</creatorcontrib><creatorcontrib>Vexler, Albert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Mingmei</au><au>Yu, Jihnhee</au><au>Lillvis, Denise F.</au><au>Vexler, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence function methods to assess the effectiveness of influenza vaccine with survey data</atitle><jtitle>Health services research</jtitle><addtitle>Health Serv Res</addtitle><date>2022-02</date><risdate>2022</risdate><volume>57</volume><issue>1</issue><spage>200</spage><epage>211</epage><pages>200-211</pages><issn>0017-9124</issn><eissn>1475-6773</eissn><abstract>Objective
To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions.
Data sources
We employed secondary data from the Household Component of the 2000–2016 US Medical Expenditure Panel Survey (MEPS).
Study design
We investigate a broad range of data‐balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions.
Data collection/Extraction methods
Demographic information, vaccine status, and self‐administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel.
Principal findings
Under various model assumptions, the IF methods show robust inferential performance when the data‐balancing procedures are incorporated. Once IF methods and data‐balancing techniques are implemented, contingency table‐based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000–2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza‐incurred expenditures.
Conclusions
We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>34643942</pmid><doi>10.1111/1475-6773.13895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6866-5928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9124 |
ispartof | Health services research, 2022-02, Vol.57 (1), p.200-211 |
issn | 0017-9124 1475-6773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763297 |
source | Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Balancing biostatistical methods Case-Control Studies Computer Simulation Contingency Data analysis Data collection Effectiveness Epidemics - prevention & control Estimates Expenditures Extraction Female Generalized linear models Health care expenditures Health services Health surveys healthcare surveys Humans Influence functions Influenza Influenza vaccines Influenza Vaccines - therapeutic use Influenza, Human - epidemiology Influenza, Human - prevention & control Linear analysis Male medical expenditures Medical research Medicine, Experimental Methods Middle Aged Performance evaluation Polls & surveys Prevention Research Design risk assessment Risk Factors Robustness Simulation Statistical analysis Statistical models Vaccines |
title | Influence function methods to assess the effectiveness of influenza vaccine with survey data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20function%20methods%20to%20assess%20the%20effectiveness%20of%20influenza%20vaccine%20with%20survey%20data&rft.jtitle=Health%20services%20research&rft.au=Tian,%20Mingmei&rft.date=2022-02&rft.volume=57&rft.issue=1&rft.spage=200&rft.epage=211&rft.pages=200-211&rft.issn=0017-9124&rft.eissn=1475-6773&rft_id=info:doi/10.1111/1475-6773.13895&rft_dat=%3Cgale_pubme%3EA694379453%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620099819&rft_id=info:pmid/34643942&rft_galeid=A694379453&rfr_iscdi=true |