Superabsorption in an organic microcavity: Toward a quantum battery
The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been see...
Gespeichert in:
Veröffentlicht in: | Science advances 2022-01, Vol.8 (2), p.eabk3160-eabk3160 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eabk3160 |
---|---|
container_issue | 2 |
container_start_page | eabk3160 |
container_title | Science advances |
container_volume | 8 |
creator | Quach, James Q McGhee, Kirsty E Ganzer, Lucia Rouse, Dominic M Lovett, Brendon W Gauger, Erik M Keeling, Jonathan Cerullo, Giulio Lidzey, David G Virgili, Tersilla |
description | The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies. |
doi_str_mv | 10.1126/sciadv.abk3160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620081481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMottRePUqOXlqTzcfuehCk-AUFD9ZzmM2mNbq72SbZSv-9K62lwsAMzDPvzLwIXVIypTSRN0FbKDdTKL4YleQEDROWikkieHZ6VA_QOIRPQgjlUgqan6MBE4SRPoZo9ta1xkMRnG-jdQ22DYYGO7-CxmpcW-2dho2N21u8cN_gSwx43UETuxoXEKPx2wt0toQqmPE-j9D748Ni9jyZvz69zO7nE82FjBNOTS7FkuhUJjnPpKY0LXMDIEVhcshFURquBRMZGNIfmFDGGBGlkDnrcc5G6G6n23ZFbUptmuihUq23NfitcmDV_05jP9TKbVSWijzlrBe43gt4t-5MiKq2QZuqgsa4LqhEJoRklGe0R6c7tP8_BG-WhzWUqF_z1c58tTe_H7g6Pu6A_1nNfgBZpIIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620081481</pqid></control><display><type>article</type><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</creator><creatorcontrib>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</creatorcontrib><description>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abk3160</identifier><identifier>PMID: 35030030</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Physical and Materials Sciences ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2022-01, Vol.8 (2), p.eabk3160-eabk3160</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</citedby><cites>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</cites><orcidid>0000-0002-8075-0498 ; 0000-0002-3619-2505 ; 0000-0003-1522-1570 ; 0000-0002-9534-2702 ; 0000-0002-7205-0483 ; 0000-0003-1232-9885 ; 0000-0002-4283-552X ; 0000-0001-5142-9585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quach, James Q</creatorcontrib><creatorcontrib>McGhee, Kirsty E</creatorcontrib><creatorcontrib>Ganzer, Lucia</creatorcontrib><creatorcontrib>Rouse, Dominic M</creatorcontrib><creatorcontrib>Lovett, Brendon W</creatorcontrib><creatorcontrib>Gauger, Erik M</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Lidzey, David G</creatorcontrib><creatorcontrib>Virgili, Tersilla</creatorcontrib><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</description><subject>Physical and Materials Sciences</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMottRePUqOXlqTzcfuehCk-AUFD9ZzmM2mNbq72SbZSv-9K62lwsAMzDPvzLwIXVIypTSRN0FbKDdTKL4YleQEDROWikkieHZ6VA_QOIRPQgjlUgqan6MBE4SRPoZo9ta1xkMRnG-jdQ22DYYGO7-CxmpcW-2dho2N21u8cN_gSwx43UETuxoXEKPx2wt0toQqmPE-j9D748Ni9jyZvz69zO7nE82FjBNOTS7FkuhUJjnPpKY0LXMDIEVhcshFURquBRMZGNIfmFDGGBGlkDnrcc5G6G6n23ZFbUptmuihUq23NfitcmDV_05jP9TKbVSWijzlrBe43gt4t-5MiKq2QZuqgsa4LqhEJoRklGe0R6c7tP8_BG-WhzWUqF_z1c58tTe_H7g6Pu6A_1nNfgBZpIIw</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Quach, James Q</creator><creator>McGhee, Kirsty E</creator><creator>Ganzer, Lucia</creator><creator>Rouse, Dominic M</creator><creator>Lovett, Brendon W</creator><creator>Gauger, Erik M</creator><creator>Keeling, Jonathan</creator><creator>Cerullo, Giulio</creator><creator>Lidzey, David G</creator><creator>Virgili, Tersilla</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8075-0498</orcidid><orcidid>https://orcid.org/0000-0002-3619-2505</orcidid><orcidid>https://orcid.org/0000-0003-1522-1570</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid></search><sort><creationdate>20220114</creationdate><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><author>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical and Materials Sciences</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quach, James Q</creatorcontrib><creatorcontrib>McGhee, Kirsty E</creatorcontrib><creatorcontrib>Ganzer, Lucia</creatorcontrib><creatorcontrib>Rouse, Dominic M</creatorcontrib><creatorcontrib>Lovett, Brendon W</creatorcontrib><creatorcontrib>Gauger, Erik M</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Lidzey, David G</creatorcontrib><creatorcontrib>Virgili, Tersilla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quach, James Q</au><au>McGhee, Kirsty E</au><au>Ganzer, Lucia</au><au>Rouse, Dominic M</au><au>Lovett, Brendon W</au><au>Gauger, Erik M</au><au>Keeling, Jonathan</au><au>Cerullo, Giulio</au><au>Lidzey, David G</au><au>Virgili, Tersilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superabsorption in an organic microcavity: Toward a quantum battery</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-01-14</date><risdate>2022</risdate><volume>8</volume><issue>2</issue><spage>eabk3160</spage><epage>eabk3160</epage><pages>eabk3160-eabk3160</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35030030</pmid><doi>10.1126/sciadv.abk3160</doi><orcidid>https://orcid.org/0000-0002-8075-0498</orcidid><orcidid>https://orcid.org/0000-0002-3619-2505</orcidid><orcidid>https://orcid.org/0000-0003-1522-1570</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-01, Vol.8 (2), p.eabk3160-eabk3160 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759743 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Physical and Materials Sciences Physics SciAdv r-articles |
title | Superabsorption in an organic microcavity: Toward a quantum battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superabsorption%20in%20an%20organic%20microcavity:%20Toward%20a%20quantum%20battery&rft.jtitle=Science%20advances&rft.au=Quach,%20James%20Q&rft.date=2022-01-14&rft.volume=8&rft.issue=2&rft.spage=eabk3160&rft.epage=eabk3160&rft.pages=eabk3160-eabk3160&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abk3160&rft_dat=%3Cproquest_pubme%3E2620081481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620081481&rft_id=info:pmid/35030030&rfr_iscdi=true |