Superabsorption in an organic microcavity: Toward a quantum battery

The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been see...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-01, Vol.8 (2), p.eabk3160-eabk3160
Hauptverfasser: Quach, James Q, McGhee, Kirsty E, Ganzer, Lucia, Rouse, Dominic M, Lovett, Brendon W, Gauger, Erik M, Keeling, Jonathan, Cerullo, Giulio, Lidzey, David G, Virgili, Tersilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabk3160
container_issue 2
container_start_page eabk3160
container_title Science advances
container_volume 8
creator Quach, James Q
McGhee, Kirsty E
Ganzer, Lucia
Rouse, Dominic M
Lovett, Brendon W
Gauger, Erik M
Keeling, Jonathan
Cerullo, Giulio
Lidzey, David G
Virgili, Tersilla
description The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.
doi_str_mv 10.1126/sciadv.abk3160
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620081481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMottRePUqOXlqTzcfuehCk-AUFD9ZzmM2mNbq72SbZSv-9K62lwsAMzDPvzLwIXVIypTSRN0FbKDdTKL4YleQEDROWikkieHZ6VA_QOIRPQgjlUgqan6MBE4SRPoZo9ta1xkMRnG-jdQ22DYYGO7-CxmpcW-2dho2N21u8cN_gSwx43UETuxoXEKPx2wt0toQqmPE-j9D748Ni9jyZvz69zO7nE82FjBNOTS7FkuhUJjnPpKY0LXMDIEVhcshFURquBRMZGNIfmFDGGBGlkDnrcc5G6G6n23ZFbUptmuihUq23NfitcmDV_05jP9TKbVSWijzlrBe43gt4t-5MiKq2QZuqgsa4LqhEJoRklGe0R6c7tP8_BG-WhzWUqF_z1c58tTe_H7g6Pu6A_1nNfgBZpIIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620081481</pqid></control><display><type>article</type><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</creator><creatorcontrib>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</creatorcontrib><description>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abk3160</identifier><identifier>PMID: 35030030</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Physical and Materials Sciences ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2022-01, Vol.8 (2), p.eabk3160-eabk3160</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</citedby><cites>FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</cites><orcidid>0000-0002-8075-0498 ; 0000-0002-3619-2505 ; 0000-0003-1522-1570 ; 0000-0002-9534-2702 ; 0000-0002-7205-0483 ; 0000-0003-1232-9885 ; 0000-0002-4283-552X ; 0000-0001-5142-9585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quach, James Q</creatorcontrib><creatorcontrib>McGhee, Kirsty E</creatorcontrib><creatorcontrib>Ganzer, Lucia</creatorcontrib><creatorcontrib>Rouse, Dominic M</creatorcontrib><creatorcontrib>Lovett, Brendon W</creatorcontrib><creatorcontrib>Gauger, Erik M</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Lidzey, David G</creatorcontrib><creatorcontrib>Virgili, Tersilla</creatorcontrib><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</description><subject>Physical and Materials Sciences</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMottRePUqOXlqTzcfuehCk-AUFD9ZzmM2mNbq72SbZSv-9K62lwsAMzDPvzLwIXVIypTSRN0FbKDdTKL4YleQEDROWikkieHZ6VA_QOIRPQgjlUgqan6MBE4SRPoZo9ta1xkMRnG-jdQ22DYYGO7-CxmpcW-2dho2N21u8cN_gSwx43UETuxoXEKPx2wt0toQqmPE-j9D748Ni9jyZvz69zO7nE82FjBNOTS7FkuhUJjnPpKY0LXMDIEVhcshFURquBRMZGNIfmFDGGBGlkDnrcc5G6G6n23ZFbUptmuihUq23NfitcmDV_05jP9TKbVSWijzlrBe43gt4t-5MiKq2QZuqgsa4LqhEJoRklGe0R6c7tP8_BG-WhzWUqF_z1c58tTe_H7g6Pu6A_1nNfgBZpIIw</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Quach, James Q</creator><creator>McGhee, Kirsty E</creator><creator>Ganzer, Lucia</creator><creator>Rouse, Dominic M</creator><creator>Lovett, Brendon W</creator><creator>Gauger, Erik M</creator><creator>Keeling, Jonathan</creator><creator>Cerullo, Giulio</creator><creator>Lidzey, David G</creator><creator>Virgili, Tersilla</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8075-0498</orcidid><orcidid>https://orcid.org/0000-0002-3619-2505</orcidid><orcidid>https://orcid.org/0000-0003-1522-1570</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid></search><sort><creationdate>20220114</creationdate><title>Superabsorption in an organic microcavity: Toward a quantum battery</title><author>Quach, James Q ; McGhee, Kirsty E ; Ganzer, Lucia ; Rouse, Dominic M ; Lovett, Brendon W ; Gauger, Erik M ; Keeling, Jonathan ; Cerullo, Giulio ; Lidzey, David G ; Virgili, Tersilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-41e965f0c7629486c117d9eaa65be9a95bde4c5358ae05032133305d569348643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical and Materials Sciences</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quach, James Q</creatorcontrib><creatorcontrib>McGhee, Kirsty E</creatorcontrib><creatorcontrib>Ganzer, Lucia</creatorcontrib><creatorcontrib>Rouse, Dominic M</creatorcontrib><creatorcontrib>Lovett, Brendon W</creatorcontrib><creatorcontrib>Gauger, Erik M</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Lidzey, David G</creatorcontrib><creatorcontrib>Virgili, Tersilla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quach, James Q</au><au>McGhee, Kirsty E</au><au>Ganzer, Lucia</au><au>Rouse, Dominic M</au><au>Lovett, Brendon W</au><au>Gauger, Erik M</au><au>Keeling, Jonathan</au><au>Cerullo, Giulio</au><au>Lidzey, David G</au><au>Virgili, Tersilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superabsorption in an organic microcavity: Toward a quantum battery</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-01-14</date><risdate>2022</risdate><volume>8</volume><issue>2</issue><spage>eabk3160</spage><epage>eabk3160</epage><pages>eabk3160-eabk3160</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35030030</pmid><doi>10.1126/sciadv.abk3160</doi><orcidid>https://orcid.org/0000-0002-8075-0498</orcidid><orcidid>https://orcid.org/0000-0002-3619-2505</orcidid><orcidid>https://orcid.org/0000-0003-1522-1570</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-01, Vol.8 (2), p.eabk3160-eabk3160
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759743
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Physical and Materials Sciences
Physics
SciAdv r-articles
title Superabsorption in an organic microcavity: Toward a quantum battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superabsorption%20in%20an%20organic%20microcavity:%20Toward%20a%20quantum%20battery&rft.jtitle=Science%20advances&rft.au=Quach,%20James%20Q&rft.date=2022-01-14&rft.volume=8&rft.issue=2&rft.spage=eabk3160&rft.epage=eabk3160&rft.pages=eabk3160-eabk3160&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abk3160&rft_dat=%3Cproquest_pubme%3E2620081481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620081481&rft_id=info:pmid/35030030&rfr_iscdi=true