Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment
Cold tumor microenvironment (TME) marked with low effector T cell infiltration leads to weak response to immune checkpoint inhibitor (ICI) treatment. Thus, switching cold to hot TME is critical to improve potent ICI therapy. Previously, we reported extracellular vesicle (EV)-like ginseng-derived nan...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2022-01, Vol.30 (1), p.327-340 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | 1 |
container_start_page | 327 |
container_title | Molecular therapy |
container_volume | 30 |
creator | Han, Xuan Wei, Qin Lv, Yan Weng, Ling Huang, Haoying Wei, Qingyun Li, Mengyuan Mao, Yujie Hua, Di Cai, Xueting Cao, Meng Cao, Peng |
description | Cold tumor microenvironment (TME) marked with low effector T cell infiltration leads to weak response to immune checkpoint inhibitor (ICI) treatment. Thus, switching cold to hot TME is critical to improve potent ICI therapy. Previously, we reported extracellular vesicle (EV)-like ginseng-derived nanoparticles (GDNPs) that were isolated from Panax ginseng C.A. Mey and can alter M2 polarization to delay the hot tumor B16F10 progression. However, the cold tumor is more common and challenging in the real world. Here, we explored a combinatorial strategy with both GDNPs and PD-1 (programmed cell death protein-1) monoclonal antibody (mAb), which exhibited the ability to alter cold TME and subsequently induce a durable systemic anti-tumor immunity in multiple murine tumor models. GDNPs enhanced PD-1 mAb anti-tumor efficacy in activating tumor-infiltrated T lymphocytes. Our results demonstrated that GDNPs could reprogram tumor-associated macrophages (TAMs) to increase CCL5 and CXCL9 secretion for recruiting CD8+ T cells into the tumor bed, which have the synergism to PD-1 mAb therapy with no detected systemic toxicity. In situ activation of TAMs by GDNPs may broadly serve as a facile platform to modulate the suppressive cold TME and optimize the PD-1 mAb immunotherapy in future clinical application.
[Display omitted]
In this paper, Cao and colleagues found that GDNPs are a more efficient PD-1 mAb therapy by simulating TAMs secreting CCL5 and CXCL9 to recruit CD8+ T cells into tumors. GDNPs and PD-1 mAb combinatorial therapy effectively convert cold tumors into hot tumors in mice and increase the ICI treatment effectiveness. |
doi_str_mv | 10.1016/j.ymthe.2021.08.028 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8753455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001621004226</els_id><sourcerecordid>34450250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-9e990a06a28481ee82bc49f5662ce929ab13a245139a1b63066a68252995774f3</originalsourceid><addsrcrecordid>eNp9Uc2KFDEQDqK46-oTCJIX6DZJJ5nOQUGWdRUWvOg5pNPVMzVOkiadGeiD727W0UEvnqqg6vup-gh5zVnLGddv9-0ayg5awQRvWd8y0T8h11wJ1TAm5NNLz_UVebEs-9pxZfRzctVJqZhQ7Jr8uMe4QNw2I2Q8wUiji2l2uaA_wELnVCAWdAUohnCMQP0O_Pc5YSzU1cmQxpXCNKF3fqXDSjPMOW2zCwHjllZ_1KfDSMsxpEwD-pwgnjCnGCrxS_JscocFXv2uN-Tbx7uvt5-ahy_3n28_PDReKlMaA8Ywx7QTvew5QC8GL82ktBYejDBu4J0TUvHOOD7ojmntdC-UMEZtNnLqbsj7M-98HAKMvkpnd7BzxuDyapND--8k4s5u08n2G9VJpSpBdyao_pclw3TBcmYf07B7-ysN-5iGZb2taVTUm79lL5g_768L784LUI8_IWS7eIToYcQMvtgx4X8FfgJOG6Ev</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Han, Xuan ; Wei, Qin ; Lv, Yan ; Weng, Ling ; Huang, Haoying ; Wei, Qingyun ; Li, Mengyuan ; Mao, Yujie ; Hua, Di ; Cai, Xueting ; Cao, Meng ; Cao, Peng</creator><creatorcontrib>Han, Xuan ; Wei, Qin ; Lv, Yan ; Weng, Ling ; Huang, Haoying ; Wei, Qingyun ; Li, Mengyuan ; Mao, Yujie ; Hua, Di ; Cai, Xueting ; Cao, Meng ; Cao, Peng</creatorcontrib><description>Cold tumor microenvironment (TME) marked with low effector T cell infiltration leads to weak response to immune checkpoint inhibitor (ICI) treatment. Thus, switching cold to hot TME is critical to improve potent ICI therapy. Previously, we reported extracellular vesicle (EV)-like ginseng-derived nanoparticles (GDNPs) that were isolated from Panax ginseng C.A. Mey and can alter M2 polarization to delay the hot tumor B16F10 progression. However, the cold tumor is more common and challenging in the real world. Here, we explored a combinatorial strategy with both GDNPs and PD-1 (programmed cell death protein-1) monoclonal antibody (mAb), which exhibited the ability to alter cold TME and subsequently induce a durable systemic anti-tumor immunity in multiple murine tumor models. GDNPs enhanced PD-1 mAb anti-tumor efficacy in activating tumor-infiltrated T lymphocytes. Our results demonstrated that GDNPs could reprogram tumor-associated macrophages (TAMs) to increase CCL5 and CXCL9 secretion for recruiting CD8+ T cells into the tumor bed, which have the synergism to PD-1 mAb therapy with no detected systemic toxicity. In situ activation of TAMs by GDNPs may broadly serve as a facile platform to modulate the suppressive cold TME and optimize the PD-1 mAb immunotherapy in future clinical application.
[Display omitted]
In this paper, Cao and colleagues found that GDNPs are a more efficient PD-1 mAb therapy by simulating TAMs secreting CCL5 and CXCL9 to recruit CD8+ T cells into tumors. GDNPs and PD-1 mAb combinatorial therapy effectively convert cold tumors into hot tumors in mice and increase the ICI treatment effectiveness.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2021.08.028</identifier><identifier>PMID: 34450250</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; CD8-Positive T-Lymphocytes ; Cell Line, Tumor ; chemokines ; cold tumor ; GDNPs ; ginseng-derived nanoparticles ; immune checkpoint inhibitor ; Immunotherapy ; macrophages ; Mice ; Nanoparticles ; Original ; Panax ; PD-1 mAb ; Tumor Microenvironment</subject><ispartof>Molecular therapy, 2022-01, Vol.30 (1), p.327-340</ispartof><rights>2021 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2021 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The American Society of Gene and Cell Therapy. 2021 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-9e990a06a28481ee82bc49f5662ce929ab13a245139a1b63066a68252995774f3</citedby><cites>FETCH-LOGICAL-c459t-9e990a06a28481ee82bc49f5662ce929ab13a245139a1b63066a68252995774f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753455/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753455/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34450250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xuan</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><creatorcontrib>Lv, Yan</creatorcontrib><creatorcontrib>Weng, Ling</creatorcontrib><creatorcontrib>Huang, Haoying</creatorcontrib><creatorcontrib>Wei, Qingyun</creatorcontrib><creatorcontrib>Li, Mengyuan</creatorcontrib><creatorcontrib>Mao, Yujie</creatorcontrib><creatorcontrib>Hua, Di</creatorcontrib><creatorcontrib>Cai, Xueting</creatorcontrib><creatorcontrib>Cao, Meng</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><title>Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Cold tumor microenvironment (TME) marked with low effector T cell infiltration leads to weak response to immune checkpoint inhibitor (ICI) treatment. Thus, switching cold to hot TME is critical to improve potent ICI therapy. Previously, we reported extracellular vesicle (EV)-like ginseng-derived nanoparticles (GDNPs) that were isolated from Panax ginseng C.A. Mey and can alter M2 polarization to delay the hot tumor B16F10 progression. However, the cold tumor is more common and challenging in the real world. Here, we explored a combinatorial strategy with both GDNPs and PD-1 (programmed cell death protein-1) monoclonal antibody (mAb), which exhibited the ability to alter cold TME and subsequently induce a durable systemic anti-tumor immunity in multiple murine tumor models. GDNPs enhanced PD-1 mAb anti-tumor efficacy in activating tumor-infiltrated T lymphocytes. Our results demonstrated that GDNPs could reprogram tumor-associated macrophages (TAMs) to increase CCL5 and CXCL9 secretion for recruiting CD8+ T cells into the tumor bed, which have the synergism to PD-1 mAb therapy with no detected systemic toxicity. In situ activation of TAMs by GDNPs may broadly serve as a facile platform to modulate the suppressive cold TME and optimize the PD-1 mAb immunotherapy in future clinical application.
[Display omitted]
In this paper, Cao and colleagues found that GDNPs are a more efficient PD-1 mAb therapy by simulating TAMs secreting CCL5 and CXCL9 to recruit CD8+ T cells into tumors. GDNPs and PD-1 mAb combinatorial therapy effectively convert cold tumors into hot tumors in mice and increase the ICI treatment effectiveness.</description><subject>Animals</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Cell Line, Tumor</subject><subject>chemokines</subject><subject>cold tumor</subject><subject>GDNPs</subject><subject>ginseng-derived nanoparticles</subject><subject>immune checkpoint inhibitor</subject><subject>Immunotherapy</subject><subject>macrophages</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Original</subject><subject>Panax</subject><subject>PD-1 mAb</subject><subject>Tumor Microenvironment</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uc2KFDEQDqK46-oTCJIX6DZJJ5nOQUGWdRUWvOg5pNPVMzVOkiadGeiD727W0UEvnqqg6vup-gh5zVnLGddv9-0ayg5awQRvWd8y0T8h11wJ1TAm5NNLz_UVebEs-9pxZfRzctVJqZhQ7Jr8uMe4QNw2I2Q8wUiji2l2uaA_wELnVCAWdAUohnCMQP0O_Pc5YSzU1cmQxpXCNKF3fqXDSjPMOW2zCwHjllZ_1KfDSMsxpEwD-pwgnjCnGCrxS_JscocFXv2uN-Tbx7uvt5-ahy_3n28_PDReKlMaA8Ywx7QTvew5QC8GL82ktBYejDBu4J0TUvHOOD7ojmntdC-UMEZtNnLqbsj7M-98HAKMvkpnd7BzxuDyapND--8k4s5u08n2G9VJpSpBdyao_pclw3TBcmYf07B7-ysN-5iGZb2taVTUm79lL5g_768L784LUI8_IWS7eIToYcQMvtgx4X8FfgJOG6Ev</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Han, Xuan</creator><creator>Wei, Qin</creator><creator>Lv, Yan</creator><creator>Weng, Ling</creator><creator>Huang, Haoying</creator><creator>Wei, Qingyun</creator><creator>Li, Mengyuan</creator><creator>Mao, Yujie</creator><creator>Hua, Di</creator><creator>Cai, Xueting</creator><creator>Cao, Meng</creator><creator>Cao, Peng</creator><general>Elsevier Inc</general><general>American Society of Gene & Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20220105</creationdate><title>Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment</title><author>Han, Xuan ; Wei, Qin ; Lv, Yan ; Weng, Ling ; Huang, Haoying ; Wei, Qingyun ; Li, Mengyuan ; Mao, Yujie ; Hua, Di ; Cai, Xueting ; Cao, Meng ; Cao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-9e990a06a28481ee82bc49f5662ce929ab13a245139a1b63066a68252995774f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Cell Line, Tumor</topic><topic>chemokines</topic><topic>cold tumor</topic><topic>GDNPs</topic><topic>ginseng-derived nanoparticles</topic><topic>immune checkpoint inhibitor</topic><topic>Immunotherapy</topic><topic>macrophages</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Original</topic><topic>Panax</topic><topic>PD-1 mAb</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xuan</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><creatorcontrib>Lv, Yan</creatorcontrib><creatorcontrib>Weng, Ling</creatorcontrib><creatorcontrib>Huang, Haoying</creatorcontrib><creatorcontrib>Wei, Qingyun</creatorcontrib><creatorcontrib>Li, Mengyuan</creatorcontrib><creatorcontrib>Mao, Yujie</creatorcontrib><creatorcontrib>Hua, Di</creatorcontrib><creatorcontrib>Cai, Xueting</creatorcontrib><creatorcontrib>Cao, Meng</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xuan</au><au>Wei, Qin</au><au>Lv, Yan</au><au>Weng, Ling</au><au>Huang, Haoying</au><au>Wei, Qingyun</au><au>Li, Mengyuan</au><au>Mao, Yujie</au><au>Hua, Di</au><au>Cai, Xueting</au><au>Cao, Meng</au><au>Cao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2022-01-05</date><risdate>2022</risdate><volume>30</volume><issue>1</issue><spage>327</spage><epage>340</epage><pages>327-340</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Cold tumor microenvironment (TME) marked with low effector T cell infiltration leads to weak response to immune checkpoint inhibitor (ICI) treatment. Thus, switching cold to hot TME is critical to improve potent ICI therapy. Previously, we reported extracellular vesicle (EV)-like ginseng-derived nanoparticles (GDNPs) that were isolated from Panax ginseng C.A. Mey and can alter M2 polarization to delay the hot tumor B16F10 progression. However, the cold tumor is more common and challenging in the real world. Here, we explored a combinatorial strategy with both GDNPs and PD-1 (programmed cell death protein-1) monoclonal antibody (mAb), which exhibited the ability to alter cold TME and subsequently induce a durable systemic anti-tumor immunity in multiple murine tumor models. GDNPs enhanced PD-1 mAb anti-tumor efficacy in activating tumor-infiltrated T lymphocytes. Our results demonstrated that GDNPs could reprogram tumor-associated macrophages (TAMs) to increase CCL5 and CXCL9 secretion for recruiting CD8+ T cells into the tumor bed, which have the synergism to PD-1 mAb therapy with no detected systemic toxicity. In situ activation of TAMs by GDNPs may broadly serve as a facile platform to modulate the suppressive cold TME and optimize the PD-1 mAb immunotherapy in future clinical application.
[Display omitted]
In this paper, Cao and colleagues found that GDNPs are a more efficient PD-1 mAb therapy by simulating TAMs secreting CCL5 and CXCL9 to recruit CD8+ T cells into tumors. GDNPs and PD-1 mAb combinatorial therapy effectively convert cold tumors into hot tumors in mice and increase the ICI treatment effectiveness.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34450250</pmid><doi>10.1016/j.ymthe.2021.08.028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2022-01, Vol.30 (1), p.327-340 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8753455 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals CD8-Positive T-Lymphocytes Cell Line, Tumor chemokines cold tumor GDNPs ginseng-derived nanoparticles immune checkpoint inhibitor Immunotherapy macrophages Mice Nanoparticles Original Panax PD-1 mAb Tumor Microenvironment |
title | Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ginseng-derived%20nanoparticles%20potentiate%20immune%20checkpoint%20antibody%20efficacy%20by%20reprogramming%20the%20cold%20tumor%20microenvironment&rft.jtitle=Molecular%20therapy&rft.au=Han,%20Xuan&rft.date=2022-01-05&rft.volume=30&rft.issue=1&rft.spage=327&rft.epage=340&rft.pages=327-340&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2021.08.028&rft_dat=%3Cpubmed_cross%3E34450250%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34450250&rft_els_id=S1525001621004226&rfr_iscdi=true |