Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis

Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe‐NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2022-01, Vol.113 (1), p.65-78
Hauptverfasser: Cheng, Zhen, Akatsuka, Shinya, Li, Guang Hua, Mori, Kiyoshi, Takahashi, Takashi, Toyokuni, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 65
container_title Cancer science
container_volume 113
creator Cheng, Zhen
Akatsuka, Shinya
Li, Guang Hua
Mori, Kiyoshi
Takahashi, Takashi
Toyokuni, Shinya
description Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe‐NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeated i.p. injections of Fe‐NTA develop renal cell carcinoma (RCC). To elucidate the molecular mechanisms that cause susceptibility to renal carcinogenesis, we first established an inter‐strain difference in the susceptibility to Fe‐NTA‐induced renal carcinogenesis in mice. Based on a previous observation of a low incidence of RCC with this model in C57BL/6J strain mice, we investigated A/J strain mice here, which demonstrated significantly higher susceptibility to Fe‐NTA‐induced renal carcinogenesis. Homozygous deletion of the Cdkn2a/2b tumor suppressor locus was detected for the first time in A/J strain mice. Focusing on ferroptosis and iron metabolism, we explored the mechanisms involved that lead to the difference in RCC development. We compared the protective responses in the kidney of A/J and C57BL/6J strains after Fe‐NTA treatment. After 3‐week Fe‐NTA treatment, A/J mice maintained higher levels of expression of glutathione peroxidase 4 and xCT (SLC7A11), leading to a lower level of lipid peroxidation. Simultaneously, A/J mice had decreased expression of transferrin receptor and increased expression of ferritin to greater degrees than C57BL/6 mice. After a single Fe‐NTA injection, higher levels of oxidative cell damage and cytosolic catalytic Fe(II) were observed in C57BL/6J mice, accompanied by a greater increase in lipocalin‐2. Lipocalin‐2 deficiency significantly decreased oxidative renal damage. Our results suggest that a genetic trait favoring ferroptosis resistance contributes to high susceptibility to Fe‐NTA‐induced RCC in A/J strain. Cancer susceptibility is an important issue when considering cancer prevention. In this paper, we used an iron‐mediated oxidative stress‐induced renal carcinogenesis model in mice and found that ferroptosis resistance is an important factor determining cancer susceptibility.
doi_str_mv 10.1111/cas.15175
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8748236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618379937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-a90bb7757d0cb4bddf482a6d95f00006f5996a09ca923a20874eaef93f28b81d3</originalsourceid><addsrcrecordid>eNp1kUtOwzAQhi0E4r3gAsgSKxahTpzE8QapqigPVWIBrC3HnrRGqV3sBNQdR-CMnATTAoIFs7AtzafPM_oROkrJWRproGQ4S4uUFRtoN6U5Txgh5ebqzRJOaLaD9kJ4JISWOc-30Q7NS87LIt9FT2Pw3i06F0zAHuLZSasAa-jAz42FgGdmOsOhDwoWnalNa7oldg2e9z628XBwg0PnpbG4c9h4Z99f34zVvQIdhVa2WEmvjHVTsJ_-A7TVyDbA4de9jx7GF_ejq2Rye3k9Gk4SVVBaJJKTumasYJqoOq-1bvIqk6XmRUNilU0RN5CEK8kzKjNSsRwkNJw2WVVXqab76HztXfT1HLQCG6dsxcKbufRL4aQRfzvWzMTUPYtoqjJaRsHJl8C7px5CJx5d7-NCQWRlWlHGOWWROl1TyrsQPDQ_P6REfKYjYjpilU5kj3-P9EN-xxGBwRp4MS0s_zeJ0fBurfwAFaqdow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618379937</pqid></control><display><type>article</type><title>Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Cheng, Zhen ; Akatsuka, Shinya ; Li, Guang Hua ; Mori, Kiyoshi ; Takahashi, Takashi ; Toyokuni, Shinya</creator><creatorcontrib>Cheng, Zhen ; Akatsuka, Shinya ; Li, Guang Hua ; Mori, Kiyoshi ; Takahashi, Takashi ; Toyokuni, Shinya</creatorcontrib><description>Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe‐NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeated i.p. injections of Fe‐NTA develop renal cell carcinoma (RCC). To elucidate the molecular mechanisms that cause susceptibility to renal carcinogenesis, we first established an inter‐strain difference in the susceptibility to Fe‐NTA‐induced renal carcinogenesis in mice. Based on a previous observation of a low incidence of RCC with this model in C57BL/6J strain mice, we investigated A/J strain mice here, which demonstrated significantly higher susceptibility to Fe‐NTA‐induced renal carcinogenesis. Homozygous deletion of the Cdkn2a/2b tumor suppressor locus was detected for the first time in A/J strain mice. Focusing on ferroptosis and iron metabolism, we explored the mechanisms involved that lead to the difference in RCC development. We compared the protective responses in the kidney of A/J and C57BL/6J strains after Fe‐NTA treatment. After 3‐week Fe‐NTA treatment, A/J mice maintained higher levels of expression of glutathione peroxidase 4 and xCT (SLC7A11), leading to a lower level of lipid peroxidation. Simultaneously, A/J mice had decreased expression of transferrin receptor and increased expression of ferritin to greater degrees than C57BL/6 mice. After a single Fe‐NTA injection, higher levels of oxidative cell damage and cytosolic catalytic Fe(II) were observed in C57BL/6J mice, accompanied by a greater increase in lipocalin‐2. Lipocalin‐2 deficiency significantly decreased oxidative renal damage. Our results suggest that a genetic trait favoring ferroptosis resistance contributes to high susceptibility to Fe‐NTA‐induced RCC in A/J strain. Cancer susceptibility is an important issue when considering cancer prevention. In this paper, we used an iron‐mediated oxidative stress‐induced renal carcinogenesis model in mice and found that ferroptosis resistance is an important factor determining cancer susceptibility.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.15175</identifier><identifier>PMID: 34699654</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>animal models ; Animals ; Antibodies ; Carcinogenesis ; Carcinoma, Renal Cell - chemically induced ; Carcinoma, Renal Cell - genetics ; Carcinoma, Renal Cell - pathology ; Cationic Amino Acid Transporter 1 - genetics ; Cyclin-Dependent Kinase Inhibitor p15 - genetics ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Drug dosages ; Experiments ; Ferric Compounds - adverse effects ; Ferritin ; Ferritins - genetics ; Ferroptosis ; Free radicals ; Gene deletion ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Glutathione peroxidase ; Homozygote ; Hydroxyl radicals ; Injection ; Injections, Intraperitoneal ; Iron ; Kidney Neoplasms - chemically induced ; Kidney Neoplasms - genetics ; Kidney Neoplasms - pathology ; Kidneys ; Laboratory animals ; Lipid Peroxidation ; Lipocalin ; Lipocalin-2 - genetics ; lipocalins ; Male ; Medical research ; Mice ; Molecular modelling ; Mutation ; Neoplasms, Experimental ; Nitrilotriacetic Acid - adverse effects ; Nitrilotriacetic Acid - analogs &amp; derivatives ; Original ; Oxidative Stress ; Proteins ; Proximal tubules ; Receptors, Transferrin - genetics ; Renal cell carcinoma ; Sequence Deletion ; Species Specificity ; Susceptibility ; Transferrins ; Tumor suppressor genes ; Tumors ; Up-Regulation</subject><ispartof>Cancer science, 2022-01, Vol.113 (1), p.65-78</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-a90bb7757d0cb4bddf482a6d95f00006f5996a09ca923a20874eaef93f28b81d3</citedby><cites>FETCH-LOGICAL-c5335-a90bb7757d0cb4bddf482a6d95f00006f5996a09ca923a20874eaef93f28b81d3</cites><orcidid>0000-0002-5757-1109 ; 0000-0003-0615-7001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748236/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748236/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34699654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Akatsuka, Shinya</creatorcontrib><creatorcontrib>Li, Guang Hua</creatorcontrib><creatorcontrib>Mori, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Takashi</creatorcontrib><creatorcontrib>Toyokuni, Shinya</creatorcontrib><title>Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe‐NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeated i.p. injections of Fe‐NTA develop renal cell carcinoma (RCC). To elucidate the molecular mechanisms that cause susceptibility to renal carcinogenesis, we first established an inter‐strain difference in the susceptibility to Fe‐NTA‐induced renal carcinogenesis in mice. Based on a previous observation of a low incidence of RCC with this model in C57BL/6J strain mice, we investigated A/J strain mice here, which demonstrated significantly higher susceptibility to Fe‐NTA‐induced renal carcinogenesis. Homozygous deletion of the Cdkn2a/2b tumor suppressor locus was detected for the first time in A/J strain mice. Focusing on ferroptosis and iron metabolism, we explored the mechanisms involved that lead to the difference in RCC development. We compared the protective responses in the kidney of A/J and C57BL/6J strains after Fe‐NTA treatment. After 3‐week Fe‐NTA treatment, A/J mice maintained higher levels of expression of glutathione peroxidase 4 and xCT (SLC7A11), leading to a lower level of lipid peroxidation. Simultaneously, A/J mice had decreased expression of transferrin receptor and increased expression of ferritin to greater degrees than C57BL/6 mice. After a single Fe‐NTA injection, higher levels of oxidative cell damage and cytosolic catalytic Fe(II) were observed in C57BL/6J mice, accompanied by a greater increase in lipocalin‐2. Lipocalin‐2 deficiency significantly decreased oxidative renal damage. Our results suggest that a genetic trait favoring ferroptosis resistance contributes to high susceptibility to Fe‐NTA‐induced RCC in A/J strain. Cancer susceptibility is an important issue when considering cancer prevention. In this paper, we used an iron‐mediated oxidative stress‐induced renal carcinogenesis model in mice and found that ferroptosis resistance is an important factor determining cancer susceptibility.</description><subject>animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Carcinogenesis</subject><subject>Carcinoma, Renal Cell - chemically induced</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Carcinoma, Renal Cell - pathology</subject><subject>Cationic Amino Acid Transporter 1 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p15 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Drug dosages</subject><subject>Experiments</subject><subject>Ferric Compounds - adverse effects</subject><subject>Ferritin</subject><subject>Ferritins - genetics</subject><subject>Ferroptosis</subject><subject>Free radicals</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Regulatory Networks</subject><subject>Glutathione peroxidase</subject><subject>Homozygote</subject><subject>Hydroxyl radicals</subject><subject>Injection</subject><subject>Injections, Intraperitoneal</subject><subject>Iron</subject><subject>Kidney Neoplasms - chemically induced</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - pathology</subject><subject>Kidneys</subject><subject>Laboratory animals</subject><subject>Lipid Peroxidation</subject><subject>Lipocalin</subject><subject>Lipocalin-2 - genetics</subject><subject>lipocalins</subject><subject>Male</subject><subject>Medical research</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Neoplasms, Experimental</subject><subject>Nitrilotriacetic Acid - adverse effects</subject><subject>Nitrilotriacetic Acid - analogs &amp; derivatives</subject><subject>Original</subject><subject>Oxidative Stress</subject><subject>Proteins</subject><subject>Proximal tubules</subject><subject>Receptors, Transferrin - genetics</subject><subject>Renal cell carcinoma</subject><subject>Sequence Deletion</subject><subject>Species Specificity</subject><subject>Susceptibility</subject><subject>Transferrins</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtOwzAQhi0E4r3gAsgSKxahTpzE8QapqigPVWIBrC3HnrRGqV3sBNQdR-CMnATTAoIFs7AtzafPM_oROkrJWRproGQ4S4uUFRtoN6U5Txgh5ebqzRJOaLaD9kJ4JISWOc-30Q7NS87LIt9FT2Pw3i06F0zAHuLZSasAa-jAz42FgGdmOsOhDwoWnalNa7oldg2e9z628XBwg0PnpbG4c9h4Z99f34zVvQIdhVa2WEmvjHVTsJ_-A7TVyDbA4de9jx7GF_ejq2Rye3k9Gk4SVVBaJJKTumasYJqoOq-1bvIqk6XmRUNilU0RN5CEK8kzKjNSsRwkNJw2WVVXqab76HztXfT1HLQCG6dsxcKbufRL4aQRfzvWzMTUPYtoqjJaRsHJl8C7px5CJx5d7-NCQWRlWlHGOWWROl1TyrsQPDQ_P6REfKYjYjpilU5kj3-P9EN-xxGBwRp4MS0s_zeJ0fBurfwAFaqdow</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Cheng, Zhen</creator><creator>Akatsuka, Shinya</creator><creator>Li, Guang Hua</creator><creator>Mori, Kiyoshi</creator><creator>Takahashi, Takashi</creator><creator>Toyokuni, Shinya</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5757-1109</orcidid><orcidid>https://orcid.org/0000-0003-0615-7001</orcidid></search><sort><creationdate>202201</creationdate><title>Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis</title><author>Cheng, Zhen ; Akatsuka, Shinya ; Li, Guang Hua ; Mori, Kiyoshi ; Takahashi, Takashi ; Toyokuni, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-a90bb7757d0cb4bddf482a6d95f00006f5996a09ca923a20874eaef93f28b81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Carcinogenesis</topic><topic>Carcinoma, Renal Cell - chemically induced</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Carcinoma, Renal Cell - pathology</topic><topic>Cationic Amino Acid Transporter 1 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p15 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Drug dosages</topic><topic>Experiments</topic><topic>Ferric Compounds - adverse effects</topic><topic>Ferritin</topic><topic>Ferritins - genetics</topic><topic>Ferroptosis</topic><topic>Free radicals</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Regulatory Networks</topic><topic>Glutathione peroxidase</topic><topic>Homozygote</topic><topic>Hydroxyl radicals</topic><topic>Injection</topic><topic>Injections, Intraperitoneal</topic><topic>Iron</topic><topic>Kidney Neoplasms - chemically induced</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - pathology</topic><topic>Kidneys</topic><topic>Laboratory animals</topic><topic>Lipid Peroxidation</topic><topic>Lipocalin</topic><topic>Lipocalin-2 - genetics</topic><topic>lipocalins</topic><topic>Male</topic><topic>Medical research</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Neoplasms, Experimental</topic><topic>Nitrilotriacetic Acid - adverse effects</topic><topic>Nitrilotriacetic Acid - analogs &amp; derivatives</topic><topic>Original</topic><topic>Oxidative Stress</topic><topic>Proteins</topic><topic>Proximal tubules</topic><topic>Receptors, Transferrin - genetics</topic><topic>Renal cell carcinoma</topic><topic>Sequence Deletion</topic><topic>Species Specificity</topic><topic>Susceptibility</topic><topic>Transferrins</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Akatsuka, Shinya</creatorcontrib><creatorcontrib>Li, Guang Hua</creatorcontrib><creatorcontrib>Mori, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Takashi</creatorcontrib><creatorcontrib>Toyokuni, Shinya</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhen</au><au>Akatsuka, Shinya</au><au>Li, Guang Hua</au><au>Mori, Kiyoshi</au><au>Takahashi, Takashi</au><au>Toyokuni, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2022-01</date><risdate>2022</risdate><volume>113</volume><issue>1</issue><spage>65</spage><epage>78</epage><pages>65-78</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe‐NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeated i.p. injections of Fe‐NTA develop renal cell carcinoma (RCC). To elucidate the molecular mechanisms that cause susceptibility to renal carcinogenesis, we first established an inter‐strain difference in the susceptibility to Fe‐NTA‐induced renal carcinogenesis in mice. Based on a previous observation of a low incidence of RCC with this model in C57BL/6J strain mice, we investigated A/J strain mice here, which demonstrated significantly higher susceptibility to Fe‐NTA‐induced renal carcinogenesis. Homozygous deletion of the Cdkn2a/2b tumor suppressor locus was detected for the first time in A/J strain mice. Focusing on ferroptosis and iron metabolism, we explored the mechanisms involved that lead to the difference in RCC development. We compared the protective responses in the kidney of A/J and C57BL/6J strains after Fe‐NTA treatment. After 3‐week Fe‐NTA treatment, A/J mice maintained higher levels of expression of glutathione peroxidase 4 and xCT (SLC7A11), leading to a lower level of lipid peroxidation. Simultaneously, A/J mice had decreased expression of transferrin receptor and increased expression of ferritin to greater degrees than C57BL/6 mice. After a single Fe‐NTA injection, higher levels of oxidative cell damage and cytosolic catalytic Fe(II) were observed in C57BL/6J mice, accompanied by a greater increase in lipocalin‐2. Lipocalin‐2 deficiency significantly decreased oxidative renal damage. Our results suggest that a genetic trait favoring ferroptosis resistance contributes to high susceptibility to Fe‐NTA‐induced RCC in A/J strain. Cancer susceptibility is an important issue when considering cancer prevention. In this paper, we used an iron‐mediated oxidative stress‐induced renal carcinogenesis model in mice and found that ferroptosis resistance is an important factor determining cancer susceptibility.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34699654</pmid><doi>10.1111/cas.15175</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5757-1109</orcidid><orcidid>https://orcid.org/0000-0003-0615-7001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2022-01, Vol.113 (1), p.65-78
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8748236
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; PubMed Central
subjects animal models
Animals
Antibodies
Carcinogenesis
Carcinoma, Renal Cell - chemically induced
Carcinoma, Renal Cell - genetics
Carcinoma, Renal Cell - pathology
Cationic Amino Acid Transporter 1 - genetics
Cyclin-Dependent Kinase Inhibitor p15 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Drug dosages
Experiments
Ferric Compounds - adverse effects
Ferritin
Ferritins - genetics
Ferroptosis
Free radicals
Gene deletion
Gene expression
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Glutathione peroxidase
Homozygote
Hydroxyl radicals
Injection
Injections, Intraperitoneal
Iron
Kidney Neoplasms - chemically induced
Kidney Neoplasms - genetics
Kidney Neoplasms - pathology
Kidneys
Laboratory animals
Lipid Peroxidation
Lipocalin
Lipocalin-2 - genetics
lipocalins
Male
Medical research
Mice
Molecular modelling
Mutation
Neoplasms, Experimental
Nitrilotriacetic Acid - adverse effects
Nitrilotriacetic Acid - analogs & derivatives
Original
Oxidative Stress
Proteins
Proximal tubules
Receptors, Transferrin - genetics
Renal cell carcinoma
Sequence Deletion
Species Specificity
Susceptibility
Transferrins
Tumor suppressor genes
Tumors
Up-Regulation
title Ferroptosis resistance determines high susceptibility of murine A/J strain to iron‐induced renal carcinogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroptosis%20resistance%20determines%20high%20susceptibility%20of%20murine%20A/J%20strain%20to%20iron%E2%80%90induced%20renal%20carcinogenesis&rft.jtitle=Cancer%20science&rft.au=Cheng,%20Zhen&rft.date=2022-01&rft.volume=113&rft.issue=1&rft.spage=65&rft.epage=78&rft.pages=65-78&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.15175&rft_dat=%3Cproquest_pubme%3E2618379937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618379937&rft_id=info:pmid/34699654&rfr_iscdi=true