Porous Ceramics Adsorbents Based on Glass Fiber-Reinforced Plastics for NOx and SOx Removal

To reuse waste glass fiber-reinforced plastics (GFRPs), porous ceramics (i.e., GFRP/clay ceramics) were produced by mixing crushed GFRP with clay followed by firing the resulting mixture under different conditions. The possibility of using ceramics fired under a reducing atmosphere as adsorbent mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-01, Vol.14 (1), p.164
Hauptverfasser: Kinoshita, Hiroyuki, Yasui, Kentaro, Hamasuna, Taichi, Yuji, Toshifumi, Misawa, Naoaki, Haraguchi, Tomohiro, Sasaki, Koya, Mungkung, Narong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reuse waste glass fiber-reinforced plastics (GFRPs), porous ceramics (i.e., GFRP/clay ceramics) were produced by mixing crushed GFRP with clay followed by firing the resulting mixture under different conditions. The possibility of using ceramics fired under a reducing atmosphere as adsorbent materials to remove NOx and SOx from combustion gases of fossil fuels was investigated because of the high porosity, specific surface area, and contents of glass fibers and plastic carbides of the ceramics. NO2 and SO2 adsorption tests were conducted on several types of GFRP/clay ceramic samples, and the gas concentration reduction rates were compared to those of a clay ceramic and a volcanic pumice with high NO2 adsorption. In addition, to clarify the primary factor affecting gas adsorption, adsorption tests were conducted on the glass fibers in the GFRP and GFRP carbides. The reductively fired GFRP/clay ceramics exhibited high adsorption performance for both NO2 and SO2. The primary factor affecting the NO2 adsorption of the ceramics was the plastic carbide content in the clay structure, while that affecting the SO2 adsorption of the ceramics was the glass fiber content.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14010164