Optimising predictive models to prioritise viral discovery in zoonotic reservoirs
Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain...
Gespeichert in:
Veröffentlicht in: | The Lancet. Microbe 2022-08, Vol.3 (8), p.e625-e637 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e637 |
---|---|
container_issue | 8 |
container_start_page | e625 |
container_title | The Lancet. Microbe |
container_volume | 3 |
creator | Becker, Daniel J Albery, Gregory F Sjodin, Anna R Poisot, Timothée Bergner, Laura M Chen, Binqi Cohen, Lily E Dallas, Tad A Eskew, Evan A Fagre, Anna C Farrell, Maxwell J Guth, Sarah Han, Barbara A Simmons, Nancy B Stock, Michiel Teeling, Emma C Carlson, Colin J |
description | Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host–virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating. |
doi_str_mv | 10.1016/S2666-5247(21)00245-7 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8747432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666524721002457</els_id><sourcerecordid>35036970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-1093ddc4c28585c492513887ab7b0024134d5fb429e63fb0976b80a8f1026cc13</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMobsz9BKWXelFN0ny0N4oMv2AwRL0ObZrOV9ZmJLEwf73ZpmNeeZXw5pzznjwInRJ8STARVy9UCJFyyuQ5JRcYU8ZTeYCGu_Hh3n2Axt5_4KjihBLOj9Eg4zgThcRD9DxbBmjBQzdPls7UoAP0JmltbRY-CTYOwToI4E3SgysXSQ1e2964VQJd8mVtZwPoxBlvXG_B-RN01JQLb8Y_5wi93d-9Th7T6ezhaXI7TTUTMqQEF1lda6ZpznOuWRHbZXkuy0pW6w-RjNW8qRgtjMiaChdSVDku84ZgKrQm2Qhdb3OXn1Vram26EOup2Lct3UrZEtTflw7e1dz2KpdMsozGAL4N0M5670yz8xKs1pjVBrNaM1SUqA1mJaPvbH_xzvULNQputoKI0PRgnPIaTKcjXWd0ULWFf1Z8AxoEjtE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimising predictive models to prioritise viral discovery in zoonotic reservoirs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Becker, Daniel J ; Albery, Gregory F ; Sjodin, Anna R ; Poisot, Timothée ; Bergner, Laura M ; Chen, Binqi ; Cohen, Lily E ; Dallas, Tad A ; Eskew, Evan A ; Fagre, Anna C ; Farrell, Maxwell J ; Guth, Sarah ; Han, Barbara A ; Simmons, Nancy B ; Stock, Michiel ; Teeling, Emma C ; Carlson, Colin J</creator><creatorcontrib>Becker, Daniel J ; Albery, Gregory F ; Sjodin, Anna R ; Poisot, Timothée ; Bergner, Laura M ; Chen, Binqi ; Cohen, Lily E ; Dallas, Tad A ; Eskew, Evan A ; Fagre, Anna C ; Farrell, Maxwell J ; Guth, Sarah ; Han, Barbara A ; Simmons, Nancy B ; Stock, Michiel ; Teeling, Emma C ; Carlson, Colin J</creatorcontrib><description>Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host–virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.</description><identifier>ISSN: 2666-5247</identifier><identifier>EISSN: 2666-5247</identifier><identifier>DOI: 10.1016/S2666-5247(21)00245-7</identifier><identifier>PMID: 35036970</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Chiroptera ; COVID-19 - epidemiology ; Phylogeny ; Review ; SARS-CoV-2 ; Viruses</subject><ispartof>The Lancet. Microbe, 2022-08, Vol.3 (8), p.e625-e637</ispartof><rights>2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.</rights><rights>2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-1093ddc4c28585c492513887ab7b0024134d5fb429e63fb0976b80a8f1026cc13</citedby><cites>FETCH-LOGICAL-c467t-1093ddc4c28585c492513887ab7b0024134d5fb429e63fb0976b80a8f1026cc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35036970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Daniel J</creatorcontrib><creatorcontrib>Albery, Gregory F</creatorcontrib><creatorcontrib>Sjodin, Anna R</creatorcontrib><creatorcontrib>Poisot, Timothée</creatorcontrib><creatorcontrib>Bergner, Laura M</creatorcontrib><creatorcontrib>Chen, Binqi</creatorcontrib><creatorcontrib>Cohen, Lily E</creatorcontrib><creatorcontrib>Dallas, Tad A</creatorcontrib><creatorcontrib>Eskew, Evan A</creatorcontrib><creatorcontrib>Fagre, Anna C</creatorcontrib><creatorcontrib>Farrell, Maxwell J</creatorcontrib><creatorcontrib>Guth, Sarah</creatorcontrib><creatorcontrib>Han, Barbara A</creatorcontrib><creatorcontrib>Simmons, Nancy B</creatorcontrib><creatorcontrib>Stock, Michiel</creatorcontrib><creatorcontrib>Teeling, Emma C</creatorcontrib><creatorcontrib>Carlson, Colin J</creatorcontrib><title>Optimising predictive models to prioritise viral discovery in zoonotic reservoirs</title><title>The Lancet. Microbe</title><addtitle>Lancet Microbe</addtitle><description>Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host–virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.</description><subject>Animals</subject><subject>Chiroptera</subject><subject>COVID-19 - epidemiology</subject><subject>Phylogeny</subject><subject>Review</subject><subject>SARS-CoV-2</subject><subject>Viruses</subject><issn>2666-5247</issn><issn>2666-5247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1LwzAYhYMobsz9BKWXelFN0ny0N4oMv2AwRL0ObZrOV9ZmJLEwf73ZpmNeeZXw5pzznjwInRJ8STARVy9UCJFyyuQ5JRcYU8ZTeYCGu_Hh3n2Axt5_4KjihBLOj9Eg4zgThcRD9DxbBmjBQzdPls7UoAP0JmltbRY-CTYOwToI4E3SgysXSQ1e2964VQJd8mVtZwPoxBlvXG_B-RN01JQLb8Y_5wi93d-9Th7T6ezhaXI7TTUTMqQEF1lda6ZpznOuWRHbZXkuy0pW6w-RjNW8qRgtjMiaChdSVDku84ZgKrQm2Qhdb3OXn1Vram26EOup2Lct3UrZEtTflw7e1dz2KpdMsozGAL4N0M5670yz8xKs1pjVBrNaM1SUqA1mJaPvbH_xzvULNQputoKI0PRgnPIaTKcjXWd0ULWFf1Z8AxoEjtE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Becker, Daniel J</creator><creator>Albery, Gregory F</creator><creator>Sjodin, Anna R</creator><creator>Poisot, Timothée</creator><creator>Bergner, Laura M</creator><creator>Chen, Binqi</creator><creator>Cohen, Lily E</creator><creator>Dallas, Tad A</creator><creator>Eskew, Evan A</creator><creator>Fagre, Anna C</creator><creator>Farrell, Maxwell J</creator><creator>Guth, Sarah</creator><creator>Han, Barbara A</creator><creator>Simmons, Nancy B</creator><creator>Stock, Michiel</creator><creator>Teeling, Emma C</creator><creator>Carlson, Colin J</creator><general>Elsevier Ltd</general><general>The Authors. Published by Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20220801</creationdate><title>Optimising predictive models to prioritise viral discovery in zoonotic reservoirs</title><author>Becker, Daniel J ; Albery, Gregory F ; Sjodin, Anna R ; Poisot, Timothée ; Bergner, Laura M ; Chen, Binqi ; Cohen, Lily E ; Dallas, Tad A ; Eskew, Evan A ; Fagre, Anna C ; Farrell, Maxwell J ; Guth, Sarah ; Han, Barbara A ; Simmons, Nancy B ; Stock, Michiel ; Teeling, Emma C ; Carlson, Colin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-1093ddc4c28585c492513887ab7b0024134d5fb429e63fb0976b80a8f1026cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Chiroptera</topic><topic>COVID-19 - epidemiology</topic><topic>Phylogeny</topic><topic>Review</topic><topic>SARS-CoV-2</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Daniel J</creatorcontrib><creatorcontrib>Albery, Gregory F</creatorcontrib><creatorcontrib>Sjodin, Anna R</creatorcontrib><creatorcontrib>Poisot, Timothée</creatorcontrib><creatorcontrib>Bergner, Laura M</creatorcontrib><creatorcontrib>Chen, Binqi</creatorcontrib><creatorcontrib>Cohen, Lily E</creatorcontrib><creatorcontrib>Dallas, Tad A</creatorcontrib><creatorcontrib>Eskew, Evan A</creatorcontrib><creatorcontrib>Fagre, Anna C</creatorcontrib><creatorcontrib>Farrell, Maxwell J</creatorcontrib><creatorcontrib>Guth, Sarah</creatorcontrib><creatorcontrib>Han, Barbara A</creatorcontrib><creatorcontrib>Simmons, Nancy B</creatorcontrib><creatorcontrib>Stock, Michiel</creatorcontrib><creatorcontrib>Teeling, Emma C</creatorcontrib><creatorcontrib>Carlson, Colin J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet. Microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Daniel J</au><au>Albery, Gregory F</au><au>Sjodin, Anna R</au><au>Poisot, Timothée</au><au>Bergner, Laura M</au><au>Chen, Binqi</au><au>Cohen, Lily E</au><au>Dallas, Tad A</au><au>Eskew, Evan A</au><au>Fagre, Anna C</au><au>Farrell, Maxwell J</au><au>Guth, Sarah</au><au>Han, Barbara A</au><au>Simmons, Nancy B</au><au>Stock, Michiel</au><au>Teeling, Emma C</au><au>Carlson, Colin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising predictive models to prioritise viral discovery in zoonotic reservoirs</atitle><jtitle>The Lancet. Microbe</jtitle><addtitle>Lancet Microbe</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>3</volume><issue>8</issue><spage>e625</spage><epage>e637</epage><pages>e625-e637</pages><issn>2666-5247</issn><eissn>2666-5247</eissn><abstract>Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host–virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35036970</pmid><doi>10.1016/S2666-5247(21)00245-7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-5247 |
ispartof | The Lancet. Microbe, 2022-08, Vol.3 (8), p.e625-e637 |
issn | 2666-5247 2666-5247 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8747432 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Chiroptera COVID-19 - epidemiology Phylogeny Review SARS-CoV-2 Viruses |
title | Optimising predictive models to prioritise viral discovery in zoonotic reservoirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20predictive%20models%20to%20prioritise%20viral%20discovery%20in%20zoonotic%20reservoirs&rft.jtitle=The%20Lancet.%20Microbe&rft.au=Becker,%20Daniel%20J&rft.date=2022-08-01&rft.volume=3&rft.issue=8&rft.spage=e625&rft.epage=e637&rft.pages=e625-e637&rft.issn=2666-5247&rft.eissn=2666-5247&rft_id=info:doi/10.1016/S2666-5247(21)00245-7&rft_dat=%3Cpubmed_cross%3E35036970%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35036970&rft_els_id=S2666524721002457&rfr_iscdi=true |