Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells

A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (1), p.278
Hauptverfasser: Serôdio Costa, Bernardo F., Arias-Serrano, Blanca I., Yaremchenko, Aleksey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 278
container_title Materials
container_volume 15
creator Serôdio Costa, Bernardo F.
Arias-Serrano, Blanca I.
Yaremchenko, Aleksey A.
description A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.
doi_str_mv 10.3390/ma15010278
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618915505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-dba1f7a43e6bbbb0c44d594e91a1ecc2db47688d800403f387c7213244d0a81e3</originalsourceid><addsrcrecordid>eNpdkc1KAzEUhYMoVmo3PsGAmyqO5m9mko0gtfWHYhetbkOauaNTZpqadIq-l8_hMxlt8e9s7oXzcbiHi9ABwaeMSXxWa5JggmkmttAekTKNieR8-9feQh3vZziIMSKo3EUtlmAsOaV76PYSVlDZRQ3zZWSL6K6Mx677cDIpj0Ysfn-LBg1UUb8Cs3Q2Bx8V1kVjW5V5NHopc1j7Pagqv492Cl156GxmG90P-pPedTwcXd30LoaxYYIt43yqSZFpziCdBmHDeZ5IDpJoAsbQfMqzVIhcYMwxK5jITEYJowHDWhBgbXS-zl000xpyEy53ulILV9bavSqrS_XXmZdP6tGulMh4SikLAd1NgLPPDfilqktvQgU9B9t4RVMiJEkSnAT08B86s42bh3pfFOWUSxGo4zVlnPXeQfF9DMHq80vq50vsA7nDgWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618242498</pqid></control><display><type>article</type><title>Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Serôdio Costa, Bernardo F. ; Arias-Serrano, Blanca I. ; Yaremchenko, Aleksey A.</creator><creatorcontrib>Serôdio Costa, Bernardo F. ; Arias-Serrano, Blanca I. ; Yaremchenko, Aleksey A.</creatorcontrib><description>A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15010278</identifier><identifier>PMID: 35009422</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated sintering ; Ceramics ; Electrical resistivity ; Electrocatalysts ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrode polarization ; Electrodes ; Electrolytic cells ; High temperature ; Hydrocarbons ; Molten salt electrolytes ; Nickel ; Perovskites ; Poisoning ; Sintering (powder metallurgy) ; Solid electrolytes ; Solid oxide fuel cells ; Solid solutions ; Strontium titanates ; Sulfur ; Thermal expansion ; Titanium ; Yttria-stabilized zirconia ; Yttrium oxide</subject><ispartof>Materials, 2022-01, Vol.15 (1), p.278</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-dba1f7a43e6bbbb0c44d594e91a1ecc2db47688d800403f387c7213244d0a81e3</citedby><cites>FETCH-LOGICAL-c383t-dba1f7a43e6bbbb0c44d594e91a1ecc2db47688d800403f387c7213244d0a81e3</cites><orcidid>0000-0002-3837-5946 ; 0000-0002-7449-7553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746223/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746223/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Serôdio Costa, Bernardo F.</creatorcontrib><creatorcontrib>Arias-Serrano, Blanca I.</creatorcontrib><creatorcontrib>Yaremchenko, Aleksey A.</creatorcontrib><title>Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells</title><title>Materials</title><description>A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.</description><subject>Activated sintering</subject><subject>Ceramics</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Molten salt electrolytes</subject><subject>Nickel</subject><subject>Perovskites</subject><subject>Poisoning</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid electrolytes</subject><subject>Solid oxide fuel cells</subject><subject>Solid solutions</subject><subject>Strontium titanates</subject><subject>Sulfur</subject><subject>Thermal expansion</subject><subject>Titanium</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1KAzEUhYMoVmo3PsGAmyqO5m9mko0gtfWHYhetbkOauaNTZpqadIq-l8_hMxlt8e9s7oXzcbiHi9ABwaeMSXxWa5JggmkmttAekTKNieR8-9feQh3vZziIMSKo3EUtlmAsOaV76PYSVlDZRQ3zZWSL6K6Mx677cDIpj0Ysfn-LBg1UUb8Cs3Q2Bx8V1kVjW5V5NHopc1j7Pagqv492Cl156GxmG90P-pPedTwcXd30LoaxYYIt43yqSZFpziCdBmHDeZ5IDpJoAsbQfMqzVIhcYMwxK5jITEYJowHDWhBgbXS-zl000xpyEy53ulILV9bavSqrS_XXmZdP6tGulMh4SikLAd1NgLPPDfilqktvQgU9B9t4RVMiJEkSnAT08B86s42bh3pfFOWUSxGo4zVlnPXeQfF9DMHq80vq50vsA7nDgWM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Serôdio Costa, Bernardo F.</creator><creator>Arias-Serrano, Blanca I.</creator><creator>Yaremchenko, Aleksey A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3837-5946</orcidid><orcidid>https://orcid.org/0000-0002-7449-7553</orcidid></search><sort><creationdate>20220101</creationdate><title>Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells</title><author>Serôdio Costa, Bernardo F. ; Arias-Serrano, Blanca I. ; Yaremchenko, Aleksey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-dba1f7a43e6bbbb0c44d594e91a1ecc2db47688d800403f387c7213244d0a81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated sintering</topic><topic>Ceramics</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Molten salt electrolytes</topic><topic>Nickel</topic><topic>Perovskites</topic><topic>Poisoning</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid electrolytes</topic><topic>Solid oxide fuel cells</topic><topic>Solid solutions</topic><topic>Strontium titanates</topic><topic>Sulfur</topic><topic>Thermal expansion</topic><topic>Titanium</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serôdio Costa, Bernardo F.</creatorcontrib><creatorcontrib>Arias-Serrano, Blanca I.</creatorcontrib><creatorcontrib>Yaremchenko, Aleksey A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serôdio Costa, Bernardo F.</au><au>Arias-Serrano, Blanca I.</au><au>Yaremchenko, Aleksey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells</atitle><jtitle>Materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>278</spage><pages>278-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35009422</pmid><doi>10.3390/ma15010278</doi><orcidid>https://orcid.org/0000-0002-3837-5946</orcidid><orcidid>https://orcid.org/0000-0002-7449-7553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-01, Vol.15 (1), p.278
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746223
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Activated sintering
Ceramics
Electrical resistivity
Electrocatalysts
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Electrode polarization
Electrodes
Electrolytic cells
High temperature
Hydrocarbons
Molten salt electrolytes
Nickel
Perovskites
Poisoning
Sintering (powder metallurgy)
Solid electrolytes
Solid oxide fuel cells
Solid solutions
Strontium titanates
Sulfur
Thermal expansion
Titanium
Yttria-stabilized zirconia
Yttrium oxide
title Development of Ni-Sr(V,Ti)O3-δ Fuel Electrodes for Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Ni-Sr(V,Ti)O3-%CE%B4%20Fuel%20Electrodes%20for%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=Materials&rft.au=Ser%C3%B4dio%20Costa,%20Bernardo%20F.&rft.date=2022-01-01&rft.volume=15&rft.issue=1&rft.spage=278&rft.pages=278-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15010278&rft_dat=%3Cproquest_pubme%3E2618915505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618242498&rft_id=info:pmid/35009422&rfr_iscdi=true