Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches

To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.15 (1), p.58
Hauptverfasser: Khan, Mohsin Ali, Farooq, Furqan, Javed, Mohammad Faisal, Zafar, Adeel, Ostrowski, Krzysztof Adam, Aslam, Fahid, Malazdrewicz, Seweryn, Maślak, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!