Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches
To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming...
Gespeichert in:
Veröffentlicht in: | Materials 2021-12, Vol.15 (1), p.58 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | Materials |
container_volume | 15 |
creator | Khan, Mohsin Ali Farooq, Furqan Javed, Mohammad Faisal Zafar, Adeel Ostrowski, Krzysztof Adam Aslam, Fahid Malazdrewicz, Seweryn Maślak, Mariusz |
description | To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R
and
equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R
, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management. |
doi_str_mv | 10.3390/ma15010058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618905494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-30745cb1ef9709aa340a92797bd4920341613622cff65893e74ceaf6f6a0e2d93</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVJaEKSS39AMfQSAk70Zdm6FDabT9jQQ7PkKLTyOKvFllzJDuTfR5tNt9vMZYaZh5d3eBH6RvA5YxJfdJoUmGBcVF_QIZFS5ERyvrczH6CTGFc4FWOkovIrOmAFxpJicYhWv203tnqw3mW-ya6gH5br4Ql0WPdr4_ObYMHV7Ws29c4EGCCbR-ueswdtltZBNkusWy8udYQ6UV0_Du-Sus0mfR98AiEeo_1GtxFOPvoRmt9cP07v8tmv2_vpZJYbjsWQM1zywiwINLLEUmvGsZa0lOWi5skz40QQJig1TSOKSjIouQHdiEZoDLSW7Aj93Oj246KD2oAbgm5VH2ynw6vy2qr_L84u1bN_UVXJBSVVEjj9EAj-zwhxUJ2NBtpWO_BjVFSQSuKCS57QH5_QlR9D-ntDUU6qkiXqbEOZ4GMM0GzNEKzWKap_KSb4-679Lfo3M_YGLNCXIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618241873</pqid></control><display><type>article</type><title>Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Khan, Mohsin Ali ; Farooq, Furqan ; Javed, Mohammad Faisal ; Zafar, Adeel ; Ostrowski, Krzysztof Adam ; Aslam, Fahid ; Malazdrewicz, Seweryn ; Maślak, Mariusz</creator><creatorcontrib>Khan, Mohsin Ali ; Farooq, Furqan ; Javed, Mohammad Faisal ; Zafar, Adeel ; Ostrowski, Krzysztof Adam ; Aslam, Fahid ; Malazdrewicz, Seweryn ; Maślak, Mariusz</creatorcontrib><description>To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R
and
equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R
, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15010058</identifier><identifier>PMID: 35009206</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Air-entraining admixtures ; Cement ; Comparative studies ; Concrete ; Environmental impact ; Filler materials ; Fly ash ; Gene expression ; Laboratories ; Machine learning ; Mathematical models ; Mechanical properties ; Moisture content ; Parameters ; Sensitivity analysis ; Statistical analysis ; Tensile strength ; Waste management ; Waste materials ; Wear</subject><ispartof>Materials, 2021-12, Vol.15 (1), p.58</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-30745cb1ef9709aa340a92797bd4920341613622cff65893e74ceaf6f6a0e2d93</citedby><cites>FETCH-LOGICAL-c406t-30745cb1ef9709aa340a92797bd4920341613622cff65893e74ceaf6f6a0e2d93</cites><orcidid>0000-0003-2863-3283 ; 0000-0003-3592-429X ; 0000-0002-7260-5557 ; 0000-0001-5478-9324 ; 0000-0001-5047-5862 ; 0000-0002-4671-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746218/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746218/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35009206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Mohsin Ali</creatorcontrib><creatorcontrib>Farooq, Furqan</creatorcontrib><creatorcontrib>Javed, Mohammad Faisal</creatorcontrib><creatorcontrib>Zafar, Adeel</creatorcontrib><creatorcontrib>Ostrowski, Krzysztof Adam</creatorcontrib><creatorcontrib>Aslam, Fahid</creatorcontrib><creatorcontrib>Malazdrewicz, Seweryn</creatorcontrib><creatorcontrib>Maślak, Mariusz</creatorcontrib><title>Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R
and
equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R
, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management.</description><subject>Aggregates</subject><subject>Air-entraining admixtures</subject><subject>Cement</subject><subject>Comparative studies</subject><subject>Concrete</subject><subject>Environmental impact</subject><subject>Filler materials</subject><subject>Fly ash</subject><subject>Gene expression</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Parameters</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Tensile strength</subject><subject>Waste management</subject><subject>Waste materials</subject><subject>Wear</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1r3DAQhkVJaEKSS39AMfQSAk70Zdm6FDabT9jQQ7PkKLTyOKvFllzJDuTfR5tNt9vMZYaZh5d3eBH6RvA5YxJfdJoUmGBcVF_QIZFS5ERyvrczH6CTGFc4FWOkovIrOmAFxpJicYhWv203tnqw3mW-ya6gH5br4Ql0WPdr4_ObYMHV7Ws29c4EGCCbR-ueswdtltZBNkusWy8udYQ6UV0_Du-Sus0mfR98AiEeo_1GtxFOPvoRmt9cP07v8tmv2_vpZJYbjsWQM1zywiwINLLEUmvGsZa0lOWi5skz40QQJig1TSOKSjIouQHdiEZoDLSW7Aj93Oj246KD2oAbgm5VH2ynw6vy2qr_L84u1bN_UVXJBSVVEjj9EAj-zwhxUJ2NBtpWO_BjVFSQSuKCS57QH5_QlR9D-ntDUU6qkiXqbEOZ4GMM0GzNEKzWKap_KSb4-679Lfo3M_YGLNCXIg</recordid><startdate>20211222</startdate><enddate>20211222</enddate><creator>Khan, Mohsin Ali</creator><creator>Farooq, Furqan</creator><creator>Javed, Mohammad Faisal</creator><creator>Zafar, Adeel</creator><creator>Ostrowski, Krzysztof Adam</creator><creator>Aslam, Fahid</creator><creator>Malazdrewicz, Seweryn</creator><creator>Maślak, Mariusz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2863-3283</orcidid><orcidid>https://orcid.org/0000-0003-3592-429X</orcidid><orcidid>https://orcid.org/0000-0002-7260-5557</orcidid><orcidid>https://orcid.org/0000-0001-5478-9324</orcidid><orcidid>https://orcid.org/0000-0001-5047-5862</orcidid><orcidid>https://orcid.org/0000-0002-4671-1655</orcidid></search><sort><creationdate>20211222</creationdate><title>Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches</title><author>Khan, Mohsin Ali ; Farooq, Furqan ; Javed, Mohammad Faisal ; Zafar, Adeel ; Ostrowski, Krzysztof Adam ; Aslam, Fahid ; Malazdrewicz, Seweryn ; Maślak, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-30745cb1ef9709aa340a92797bd4920341613622cff65893e74ceaf6f6a0e2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Air-entraining admixtures</topic><topic>Cement</topic><topic>Comparative studies</topic><topic>Concrete</topic><topic>Environmental impact</topic><topic>Filler materials</topic><topic>Fly ash</topic><topic>Gene expression</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Parameters</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Tensile strength</topic><topic>Waste management</topic><topic>Waste materials</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mohsin Ali</creatorcontrib><creatorcontrib>Farooq, Furqan</creatorcontrib><creatorcontrib>Javed, Mohammad Faisal</creatorcontrib><creatorcontrib>Zafar, Adeel</creatorcontrib><creatorcontrib>Ostrowski, Krzysztof Adam</creatorcontrib><creatorcontrib>Aslam, Fahid</creatorcontrib><creatorcontrib>Malazdrewicz, Seweryn</creatorcontrib><creatorcontrib>Maślak, Mariusz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Mohsin Ali</au><au>Farooq, Furqan</au><au>Javed, Mohammad Faisal</au><au>Zafar, Adeel</au><au>Ostrowski, Krzysztof Adam</au><au>Aslam, Fahid</au><au>Malazdrewicz, Seweryn</au><au>Maślak, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-22</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>58</spage><pages>58-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R
and
equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R
, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35009206</pmid><doi>10.3390/ma15010058</doi><orcidid>https://orcid.org/0000-0003-2863-3283</orcidid><orcidid>https://orcid.org/0000-0003-3592-429X</orcidid><orcidid>https://orcid.org/0000-0002-7260-5557</orcidid><orcidid>https://orcid.org/0000-0001-5478-9324</orcidid><orcidid>https://orcid.org/0000-0001-5047-5862</orcidid><orcidid>https://orcid.org/0000-0002-4671-1655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-12, Vol.15 (1), p.58 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746218 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Aggregates Air-entraining admixtures Cement Comparative studies Concrete Environmental impact Filler materials Fly ash Gene expression Laboratories Machine learning Mathematical models Mechanical properties Moisture content Parameters Sensitivity analysis Statistical analysis Tensile strength Waste management Waste materials Wear |
title | Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Depth%20of%20Wear%20of%20Eco-Friendly%20Concrete%20Using%20Machine%20Learning%20Based%20Computational%20Approaches&rft.jtitle=Materials&rft.au=Khan,%20Mohsin%20Ali&rft.date=2021-12-22&rft.volume=15&rft.issue=1&rft.spage=58&rft.pages=58-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15010058&rft_dat=%3Cproquest_pubme%3E2618905494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618241873&rft_id=info:pmid/35009206&rfr_iscdi=true |