High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal

The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.15 (1), p.109
Hauptverfasser: Song, Yan, Chai, Mengyu, Han, Zelin, Liu, Pan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 109
container_title Materials
container_volume 15
creator Song, Yan
Chai, Mengyu
Han, Zelin
Liu, Pan
description The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.
doi_str_mv 10.3390/ma15010109
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618242133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotmg3_gAZcCPCaF5NJxtBi1qxxYVVl-FOeseOzKMmM4L_3tjW-rhZ3JB8HM7hEHLA6KkQmp6VwPqUhaO3SJdprWKmpdz-de-QnvevNIwQLOF6l3REn1LN-6pL7kb5yzyeYrlAB03rMJpi5fMCI6hm0dAhLqJLnMN7XrsoryIIb5P6KXpoEIsl84zFLJpgA8U-2cmg8Nhb7z3yeH01HY7i8f3N7fBiHFtJVRMrDhaSjGYUEi6zTKJNFYM0DXEyKqylKITgmA0UYB-0TmQqhaUzrXgy4EzskfOV7qJNS5xZrBoHhVm4vAT3YWrIzd-fKp-bl_rdJAOpGJdB4Hgt4Oq3Fn1jytxbLAqosG694YolmqrgNqBH_9DXunVViLekuAx-RKBOVpR1tfcOs40ZRs1XTeanpgAf_ra_Qb9LEZ-2douO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618242133</pqid></control><display><type>article</type><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</creator><creatorcontrib>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</creatorcontrib><description>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15010109</identifier><identifier>PMID: 35009256</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Base metal ; Chromium molybdenum steels ; Chromium molybdenum vanadium steels ; Crack propagation ; Creep strength ; Creep tests ; Damage ; Deformation ; Ductility ; Fracture surfaces ; Grain size ; High temperature ; Hydrogen ; Hydrogenation ; Manufacturing ; Mechanical properties ; Metal fatigue ; Microstructure ; Nuclear safety ; Pressure vessels ; Reactors ; Steel ; Tensile strength ; Tensile tests ; Weld metal ; Weldments</subject><ispartof>Materials, 2021-12, Vol.15 (1), p.109</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</citedby><cites>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</cites><orcidid>0000-0003-1200-9320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35009256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</description><subject>Base metal</subject><subject>Chromium molybdenum steels</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Crack propagation</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Deformation</subject><subject>Ductility</subject><subject>Fracture surfaces</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nuclear safety</subject><subject>Pressure vessels</subject><subject>Reactors</subject><subject>Steel</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Weld metal</subject><subject>Weldments</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMotmg3_gAZcCPCaF5NJxtBi1qxxYVVl-FOeseOzKMmM4L_3tjW-rhZ3JB8HM7hEHLA6KkQmp6VwPqUhaO3SJdprWKmpdz-de-QnvevNIwQLOF6l3REn1LN-6pL7kb5yzyeYrlAB03rMJpi5fMCI6hm0dAhLqJLnMN7XrsoryIIb5P6KXpoEIsl84zFLJpgA8U-2cmg8Nhb7z3yeH01HY7i8f3N7fBiHFtJVRMrDhaSjGYUEi6zTKJNFYM0DXEyKqylKITgmA0UYB-0TmQqhaUzrXgy4EzskfOV7qJNS5xZrBoHhVm4vAT3YWrIzd-fKp-bl_rdJAOpGJdB4Hgt4Oq3Fn1jytxbLAqosG694YolmqrgNqBH_9DXunVViLekuAx-RKBOVpR1tfcOs40ZRs1XTeanpgAf_ra_Qb9LEZ-2douO</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>Song, Yan</creator><creator>Chai, Mengyu</creator><creator>Han, Zelin</creator><creator>Liu, Pan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1200-9320</orcidid></search><sort><creationdate>20211224</creationdate><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><author>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base metal</topic><topic>Chromium molybdenum steels</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Crack propagation</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Deformation</topic><topic>Ductility</topic><topic>Fracture surfaces</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nuclear safety</topic><topic>Pressure vessels</topic><topic>Reactors</topic><topic>Steel</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Weld metal</topic><topic>Weldments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yan</au><au>Chai, Mengyu</au><au>Han, Zelin</au><au>Liu, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-24</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>109</spage><pages>109-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35009256</pmid><doi>10.3390/ma15010109</doi><orcidid>https://orcid.org/0000-0003-1200-9320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-12, Vol.15 (1), p.109
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746124
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Base metal
Chromium molybdenum steels
Chromium molybdenum vanadium steels
Crack propagation
Creep strength
Creep tests
Damage
Deformation
Ductility
Fracture surfaces
Grain size
High temperature
Hydrogen
Hydrogenation
Manufacturing
Mechanical properties
Metal fatigue
Microstructure
Nuclear safety
Pressure vessels
Reactors
Steel
Tensile strength
Tensile tests
Weld metal
Weldments
title High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Tensile%20and%20Creep%20Behavior%20in%20a%20CrMoV%20Steel%20and%20Weld%20Metal&rft.jtitle=Materials&rft.au=Song,%20Yan&rft.date=2021-12-24&rft.volume=15&rft.issue=1&rft.spage=109&rft.pages=109-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15010109&rft_dat=%3Cproquest_pubme%3E2618242133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618242133&rft_id=info:pmid/35009256&rfr_iscdi=true