High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal
The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr...
Gespeichert in:
Veröffentlicht in: | Materials 2021-12, Vol.15 (1), p.109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Materials |
container_volume | 15 |
creator | Song, Yan Chai, Mengyu Han, Zelin Liu, Pan |
description | The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors. |
doi_str_mv | 10.3390/ma15010109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618242133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotmg3_gAZcCPCaF5NJxtBi1qxxYVVl-FOeseOzKMmM4L_3tjW-rhZ3JB8HM7hEHLA6KkQmp6VwPqUhaO3SJdprWKmpdz-de-QnvevNIwQLOF6l3REn1LN-6pL7kb5yzyeYrlAB03rMJpi5fMCI6hm0dAhLqJLnMN7XrsoryIIb5P6KXpoEIsl84zFLJpgA8U-2cmg8Nhb7z3yeH01HY7i8f3N7fBiHFtJVRMrDhaSjGYUEi6zTKJNFYM0DXEyKqylKITgmA0UYB-0TmQqhaUzrXgy4EzskfOV7qJNS5xZrBoHhVm4vAT3YWrIzd-fKp-bl_rdJAOpGJdB4Hgt4Oq3Fn1jytxbLAqosG694YolmqrgNqBH_9DXunVViLekuAx-RKBOVpR1tfcOs40ZRs1XTeanpgAf_ra_Qb9LEZ-2douO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618242133</pqid></control><display><type>article</type><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</creator><creatorcontrib>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</creatorcontrib><description>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15010109</identifier><identifier>PMID: 35009256</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Base metal ; Chromium molybdenum steels ; Chromium molybdenum vanadium steels ; Crack propagation ; Creep strength ; Creep tests ; Damage ; Deformation ; Ductility ; Fracture surfaces ; Grain size ; High temperature ; Hydrogen ; Hydrogenation ; Manufacturing ; Mechanical properties ; Metal fatigue ; Microstructure ; Nuclear safety ; Pressure vessels ; Reactors ; Steel ; Tensile strength ; Tensile tests ; Weld metal ; Weldments</subject><ispartof>Materials, 2021-12, Vol.15 (1), p.109</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</citedby><cites>FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</cites><orcidid>0000-0003-1200-9320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35009256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</description><subject>Base metal</subject><subject>Chromium molybdenum steels</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Crack propagation</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Deformation</subject><subject>Ductility</subject><subject>Fracture surfaces</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nuclear safety</subject><subject>Pressure vessels</subject><subject>Reactors</subject><subject>Steel</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Weld metal</subject><subject>Weldments</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMotmg3_gAZcCPCaF5NJxtBi1qxxYVVl-FOeseOzKMmM4L_3tjW-rhZ3JB8HM7hEHLA6KkQmp6VwPqUhaO3SJdprWKmpdz-de-QnvevNIwQLOF6l3REn1LN-6pL7kb5yzyeYrlAB03rMJpi5fMCI6hm0dAhLqJLnMN7XrsoryIIb5P6KXpoEIsl84zFLJpgA8U-2cmg8Nhb7z3yeH01HY7i8f3N7fBiHFtJVRMrDhaSjGYUEi6zTKJNFYM0DXEyKqylKITgmA0UYB-0TmQqhaUzrXgy4EzskfOV7qJNS5xZrBoHhVm4vAT3YWrIzd-fKp-bl_rdJAOpGJdB4Hgt4Oq3Fn1jytxbLAqosG694YolmqrgNqBH_9DXunVViLekuAx-RKBOVpR1tfcOs40ZRs1XTeanpgAf_ra_Qb9LEZ-2douO</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>Song, Yan</creator><creator>Chai, Mengyu</creator><creator>Han, Zelin</creator><creator>Liu, Pan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1200-9320</orcidid></search><sort><creationdate>20211224</creationdate><title>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</title><author>Song, Yan ; Chai, Mengyu ; Han, Zelin ; Liu, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-62aca8f0f0a824ff4ecb61abb390f03cc0e3332ef76ae5a9984b43c0d96287213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base metal</topic><topic>Chromium molybdenum steels</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Crack propagation</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Deformation</topic><topic>Ductility</topic><topic>Fracture surfaces</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nuclear safety</topic><topic>Pressure vessels</topic><topic>Reactors</topic><topic>Steel</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Weld metal</topic><topic>Weldments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yan</au><au>Chai, Mengyu</au><au>Han, Zelin</au><au>Liu, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-24</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>109</spage><pages>109-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350-500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35009256</pmid><doi>10.3390/ma15010109</doi><orcidid>https://orcid.org/0000-0003-1200-9320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-12, Vol.15 (1), p.109 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746124 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Base metal Chromium molybdenum steels Chromium molybdenum vanadium steels Crack propagation Creep strength Creep tests Damage Deformation Ductility Fracture surfaces Grain size High temperature Hydrogen Hydrogenation Manufacturing Mechanical properties Metal fatigue Microstructure Nuclear safety Pressure vessels Reactors Steel Tensile strength Tensile tests Weld metal Weldments |
title | High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Tensile%20and%20Creep%20Behavior%20in%20a%20CrMoV%20Steel%20and%20Weld%20Metal&rft.jtitle=Materials&rft.au=Song,%20Yan&rft.date=2021-12-24&rft.volume=15&rft.issue=1&rft.spage=109&rft.pages=109-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15010109&rft_dat=%3Cproquest_pubme%3E2618242133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618242133&rft_id=info:pmid/35009256&rfr_iscdi=true |