Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation
The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2021-02, Vol.620, p.118973, Article 118973 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118973 |
container_title | Journal of membrane science |
container_volume | 620 |
creator | Léniz-Pizarro, Francisco Liu, Chunqing Colburn, Andrew Escobar, Isabel C. Bhattacharyya, Dibakar |
description | The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
[Display omitted]
•NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism. |
doi_str_mv | 10.1016/j.memsci.2020.118973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738820315465</els_id><sourcerecordid>2618514867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</originalsourceid><addsrcrecordid>eNp9UUtLxDAQDqLo-vgHIj16sGvSpE16EUR8gaAHPYc8Zt0sbbIm3YX990bq8-JpYOZ7zMyH0DHBU4JJc76Y9tAn46YVrnKLiJbTLTQhgtOSkopuowmmvCk5FWIP7ae0wJhwLNpdtEdrnEmsnSD9FJIb3Bq6TWHmKr6CLbzyYea6IarBBV9kGx2VhyJt_DCH5NJZkWc-LUMcij5Y6HJHeVt0KgOUdxZSkWCpRoFDtDNTXYKjz3qAXm6un6_uyofH2_ury4fSsIYOJaXALWbCEsOBibqySteKCa6p0cw0FTFYaNYQxoBYK3BrRSOMrUHrWVvV9ABdjLrLle7BGvB5y04uo-tV3MignPw78W4uX8NaCs7yW1gWOP0UiOFtBWmQvUsGunwWhFWSVUNETZhoeIayEWpiSCnC7NuGYPkRj1zIMR75EY8c48m0k98rfpO-8vi5If8U1g6izBLgDVgXwQzSBve_wzs-SqaZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618514867</pqid></control><display><type>article</type><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</creator><creatorcontrib>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</creatorcontrib><description>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
[Display omitted]
•NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2020.118973</identifier><identifier>PMID: 35002049</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>DSPM-DE ; Lanthanides separation ; Nanofiltration ; Positively charged membrane ; Zeta potential</subject><ispartof>Journal of membrane science, 2021-02, Vol.620, p.118973, Article 118973</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</citedby><cites>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</cites><orcidid>0000-0001-9948-9085 ; 0000-0001-9269-5927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2020.118973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35002049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Léniz-Pizarro, Francisco</creatorcontrib><creatorcontrib>Liu, Chunqing</creatorcontrib><creatorcontrib>Colburn, Andrew</creatorcontrib><creatorcontrib>Escobar, Isabel C.</creatorcontrib><creatorcontrib>Bhattacharyya, Dibakar</creatorcontrib><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><title>Journal of membrane science</title><addtitle>J Memb Sci</addtitle><description>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
[Display omitted]
•NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</description><subject>DSPM-DE</subject><subject>Lanthanides separation</subject><subject>Nanofiltration</subject><subject>Positively charged membrane</subject><subject>Zeta potential</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLxDAQDqLo-vgHIj16sGvSpE16EUR8gaAHPYc8Zt0sbbIm3YX990bq8-JpYOZ7zMyH0DHBU4JJc76Y9tAn46YVrnKLiJbTLTQhgtOSkopuowmmvCk5FWIP7ae0wJhwLNpdtEdrnEmsnSD9FJIb3Bq6TWHmKr6CLbzyYea6IarBBV9kGx2VhyJt_DCH5NJZkWc-LUMcij5Y6HJHeVt0KgOUdxZSkWCpRoFDtDNTXYKjz3qAXm6un6_uyofH2_ury4fSsIYOJaXALWbCEsOBibqySteKCa6p0cw0FTFYaNYQxoBYK3BrRSOMrUHrWVvV9ABdjLrLle7BGvB5y04uo-tV3MignPw78W4uX8NaCs7yW1gWOP0UiOFtBWmQvUsGunwWhFWSVUNETZhoeIayEWpiSCnC7NuGYPkRj1zIMR75EY8c48m0k98rfpO-8vi5If8U1g6izBLgDVgXwQzSBve_wzs-SqaZ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Léniz-Pizarro, Francisco</creator><creator>Liu, Chunqing</creator><creator>Colburn, Andrew</creator><creator>Escobar, Isabel C.</creator><creator>Bhattacharyya, Dibakar</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9948-9085</orcidid><orcidid>https://orcid.org/0000-0001-9269-5927</orcidid></search><sort><creationdate>20210215</creationdate><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><author>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DSPM-DE</topic><topic>Lanthanides separation</topic><topic>Nanofiltration</topic><topic>Positively charged membrane</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Léniz-Pizarro, Francisco</creatorcontrib><creatorcontrib>Liu, Chunqing</creatorcontrib><creatorcontrib>Colburn, Andrew</creatorcontrib><creatorcontrib>Escobar, Isabel C.</creatorcontrib><creatorcontrib>Bhattacharyya, Dibakar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Léniz-Pizarro, Francisco</au><au>Liu, Chunqing</au><au>Colburn, Andrew</au><au>Escobar, Isabel C.</au><au>Bhattacharyya, Dibakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</atitle><jtitle>Journal of membrane science</jtitle><addtitle>J Memb Sci</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>620</volume><spage>118973</spage><pages>118973-</pages><artnum>118973</artnum><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
[Display omitted]
•NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35002049</pmid><doi>10.1016/j.memsci.2020.118973</doi><orcidid>https://orcid.org/0000-0001-9948-9085</orcidid><orcidid>https://orcid.org/0000-0001-9269-5927</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2021-02, Vol.620, p.118973, Article 118973 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740894 |
source | Elsevier ScienceDirect Journals Complete |
subjects | DSPM-DE Lanthanides separation Nanofiltration Positively charged membrane Zeta potential |
title | Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positively%20charged%20nanofiltration%20membrane%20synthesis,%20transport%20models,%20and%20lanthanides%20separation&rft.jtitle=Journal%20of%20membrane%20science&rft.au=L%C3%A9niz-Pizarro,%20Francisco&rft.date=2021-02-15&rft.volume=620&rft.spage=118973&rft.pages=118973-&rft.artnum=118973&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2020.118973&rft_dat=%3Cproquest_pubme%3E2618514867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618514867&rft_id=info:pmid/35002049&rft_els_id=S0376738820315465&rfr_iscdi=true |