Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation

The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2021-02, Vol.620, p.118973, Article 118973
Hauptverfasser: Léniz-Pizarro, Francisco, Liu, Chunqing, Colburn, Andrew, Escobar, Isabel C., Bhattacharyya, Dibakar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118973
container_title Journal of membrane science
container_volume 620
creator Léniz-Pizarro, Francisco
Liu, Chunqing
Colburn, Andrew
Escobar, Isabel C.
Bhattacharyya, Dibakar
description The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes. [Display omitted] •NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.
doi_str_mv 10.1016/j.memsci.2020.118973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738820315465</els_id><sourcerecordid>2618514867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</originalsourceid><addsrcrecordid>eNp9UUtLxDAQDqLo-vgHIj16sGvSpE16EUR8gaAHPYc8Zt0sbbIm3YX990bq8-JpYOZ7zMyH0DHBU4JJc76Y9tAn46YVrnKLiJbTLTQhgtOSkopuowmmvCk5FWIP7ae0wJhwLNpdtEdrnEmsnSD9FJIb3Bq6TWHmKr6CLbzyYea6IarBBV9kGx2VhyJt_DCH5NJZkWc-LUMcij5Y6HJHeVt0KgOUdxZSkWCpRoFDtDNTXYKjz3qAXm6un6_uyofH2_ury4fSsIYOJaXALWbCEsOBibqySteKCa6p0cw0FTFYaNYQxoBYK3BrRSOMrUHrWVvV9ABdjLrLle7BGvB5y04uo-tV3MignPw78W4uX8NaCs7yW1gWOP0UiOFtBWmQvUsGunwWhFWSVUNETZhoeIayEWpiSCnC7NuGYPkRj1zIMR75EY8c48m0k98rfpO-8vi5If8U1g6izBLgDVgXwQzSBve_wzs-SqaZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618514867</pqid></control><display><type>article</type><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</creator><creatorcontrib>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</creatorcontrib><description>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes. [Display omitted] •NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2020.118973</identifier><identifier>PMID: 35002049</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>DSPM-DE ; Lanthanides separation ; Nanofiltration ; Positively charged membrane ; Zeta potential</subject><ispartof>Journal of membrane science, 2021-02, Vol.620, p.118973, Article 118973</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</citedby><cites>FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</cites><orcidid>0000-0001-9948-9085 ; 0000-0001-9269-5927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2020.118973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35002049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Léniz-Pizarro, Francisco</creatorcontrib><creatorcontrib>Liu, Chunqing</creatorcontrib><creatorcontrib>Colburn, Andrew</creatorcontrib><creatorcontrib>Escobar, Isabel C.</creatorcontrib><creatorcontrib>Bhattacharyya, Dibakar</creatorcontrib><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><title>Journal of membrane science</title><addtitle>J Memb Sci</addtitle><description>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes. [Display omitted] •NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</description><subject>DSPM-DE</subject><subject>Lanthanides separation</subject><subject>Nanofiltration</subject><subject>Positively charged membrane</subject><subject>Zeta potential</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLxDAQDqLo-vgHIj16sGvSpE16EUR8gaAHPYc8Zt0sbbIm3YX990bq8-JpYOZ7zMyH0DHBU4JJc76Y9tAn46YVrnKLiJbTLTQhgtOSkopuowmmvCk5FWIP7ae0wJhwLNpdtEdrnEmsnSD9FJIb3Bq6TWHmKr6CLbzyYea6IarBBV9kGx2VhyJt_DCH5NJZkWc-LUMcij5Y6HJHeVt0KgOUdxZSkWCpRoFDtDNTXYKjz3qAXm6un6_uyofH2_ury4fSsIYOJaXALWbCEsOBibqySteKCa6p0cw0FTFYaNYQxoBYK3BrRSOMrUHrWVvV9ABdjLrLle7BGvB5y04uo-tV3MignPw78W4uX8NaCs7yW1gWOP0UiOFtBWmQvUsGunwWhFWSVUNETZhoeIayEWpiSCnC7NuGYPkRj1zIMR75EY8c48m0k98rfpO-8vi5If8U1g6izBLgDVgXwQzSBve_wzs-SqaZ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Léniz-Pizarro, Francisco</creator><creator>Liu, Chunqing</creator><creator>Colburn, Andrew</creator><creator>Escobar, Isabel C.</creator><creator>Bhattacharyya, Dibakar</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9948-9085</orcidid><orcidid>https://orcid.org/0000-0001-9269-5927</orcidid></search><sort><creationdate>20210215</creationdate><title>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</title><author>Léniz-Pizarro, Francisco ; Liu, Chunqing ; Colburn, Andrew ; Escobar, Isabel C. ; Bhattacharyya, Dibakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-33e7d048d1c7e4852dab5a487b3cb4c621c08b46144e1dd809d868cd5ebbf9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DSPM-DE</topic><topic>Lanthanides separation</topic><topic>Nanofiltration</topic><topic>Positively charged membrane</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Léniz-Pizarro, Francisco</creatorcontrib><creatorcontrib>Liu, Chunqing</creatorcontrib><creatorcontrib>Colburn, Andrew</creatorcontrib><creatorcontrib>Escobar, Isabel C.</creatorcontrib><creatorcontrib>Bhattacharyya, Dibakar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Léniz-Pizarro, Francisco</au><au>Liu, Chunqing</au><au>Colburn, Andrew</au><au>Escobar, Isabel C.</au><au>Bhattacharyya, Dibakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation</atitle><jtitle>Journal of membrane science</jtitle><addtitle>J Memb Sci</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>620</volume><spage>118973</spage><pages>118973-</pages><artnum>118973</artnum><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. The NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes. [Display omitted] •NF membranes containing additional weakly basic functional groups were synthesized.•Addition of polyallylamine modified both surface properties and performance.•Selective separation of lanthanides using NF membranes was quantified.•Donnan steric pore model with dielectric exclusion elucidated transport mechanism.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35002049</pmid><doi>10.1016/j.memsci.2020.118973</doi><orcidid>https://orcid.org/0000-0001-9948-9085</orcidid><orcidid>https://orcid.org/0000-0001-9269-5927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2021-02, Vol.620, p.118973, Article 118973
issn 0376-7388
1873-3123
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740894
source Elsevier ScienceDirect Journals Complete
subjects DSPM-DE
Lanthanides separation
Nanofiltration
Positively charged membrane
Zeta potential
title Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positively%20charged%20nanofiltration%20membrane%20synthesis,%20transport%20models,%20and%20lanthanides%20separation&rft.jtitle=Journal%20of%20membrane%20science&rft.au=L%C3%A9niz-Pizarro,%20Francisco&rft.date=2021-02-15&rft.volume=620&rft.spage=118973&rft.pages=118973-&rft.artnum=118973&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2020.118973&rft_dat=%3Cproquest_pubme%3E2618514867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618514867&rft_id=info:pmid/35002049&rft_els_id=S0376738820315465&rfr_iscdi=true