Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism

Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2022-01, Vol.29 (1), p.206-217
Hauptverfasser: Li, Jingyi, Shao, Jichun, Zeng, Zhijun, He, Yumin, Tang, Can, Park, Su Hwan, Lee, Jong-Ho, Liu, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 1
container_start_page 206
container_title Cell death and differentiation
container_volume 29
creator Li, Jingyi
Shao, Jichun
Zeng, Zhijun
He, Yumin
Tang, Can
Park, Su Hwan
Lee, Jong-Ho
Liu, Rui
description Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.
doi_str_mv 10.1038/s41418-021-00851-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8738752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617107578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVJaB7tH-iiGLJ2qrfkTaGE5gEJ2SRrIVvjex18rRuNfOH--6pxmqabLoTEnDNnBn2EfGH0nFFhv6FkktmaclZTahWrzQdyzKTRtZJUHJS3ULRuqDRH5ATxiVKqTaM_kiMhpVa2occE7qBb-ykiTDjkYQdVntMUd5Cq2FfbdcRy0tBG3I_Vdp_iUvIZKtxPeQ3ZI2CVYDWPpYjVNHcjxDwEqDZFbOM44OYTOez9iPD59T4lj5c_Hy6u69v7q5uLH7d1J43MtTCeWu8NE7zRPQucisZYGwTnfddC1wrZWaUlV8CD1g0EFaRXIgQrpGq8OCXfl9zt3G4gdDDl5Ee3TcPGp72LfnD_KtOwdqu4c9YIaxQvAWevASk-z4DZPcXyH2VnxzUzjBplbHHxxdWliJigf5vAqPuNxi1oXEHjXtA4U5q-vt_treUPi2IQiwGLNK0g_Z39n9hfF1WeCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617107578</pqid></control><display><type>article</type><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</creator><creatorcontrib>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</creatorcontrib><description>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-021-00851-7</identifier><identifier>PMID: 34465890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/67/2327 ; 82/51 ; 82/80 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Extracellular matrix ; Glycolysis ; Life Sciences ; Ligases - metabolism ; Mechanical properties ; Metabolism ; Metastases ; Nucleotides - metabolism ; Phosphoribosyl Pyrophosphate ; Phosphorylation ; Ribose-Phosphate Pyrophosphokinase - genetics ; Ribose-Phosphate Pyrophosphokinase - metabolism ; Stem Cells ; TRAF2 protein ; Tumor cells ; Tumor necrosis factor ; Tumor necrosis factor receptors ; Tumor suppressor genes ; Ubiquitination</subject><ispartof>Cell death and differentiation, 2022-01, Vol.29 (1), p.206-217</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2021</rights><rights>2021. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</citedby><cites>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</cites><orcidid>0000-0001-8757-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738752/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738752/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34465890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingyi</creatorcontrib><creatorcontrib>Shao, Jichun</creatorcontrib><creatorcontrib>Zeng, Zhijun</creatorcontrib><creatorcontrib>He, Yumin</creatorcontrib><creatorcontrib>Tang, Can</creatorcontrib><creatorcontrib>Park, Su Hwan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</description><subject>631/337</subject><subject>631/67/2327</subject><subject>82/51</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Extracellular matrix</subject><subject>Glycolysis</subject><subject>Life Sciences</subject><subject>Ligases - metabolism</subject><subject>Mechanical properties</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Nucleotides - metabolism</subject><subject>Phosphoribosyl Pyrophosphate</subject><subject>Phosphorylation</subject><subject>Ribose-Phosphate Pyrophosphokinase - genetics</subject><subject>Ribose-Phosphate Pyrophosphokinase - metabolism</subject><subject>Stem Cells</subject><subject>TRAF2 protein</subject><subject>Tumor cells</subject><subject>Tumor necrosis factor</subject><subject>Tumor necrosis factor receptors</subject><subject>Tumor suppressor genes</subject><subject>Ubiquitination</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3TAQhUVJaB7tH-iiGLJ2qrfkTaGE5gEJ2SRrIVvjex18rRuNfOH--6pxmqabLoTEnDNnBn2EfGH0nFFhv6FkktmaclZTahWrzQdyzKTRtZJUHJS3ULRuqDRH5ATxiVKqTaM_kiMhpVa2occE7qBb-ykiTDjkYQdVntMUd5Cq2FfbdcRy0tBG3I_Vdp_iUvIZKtxPeQ3ZI2CVYDWPpYjVNHcjxDwEqDZFbOM44OYTOez9iPD59T4lj5c_Hy6u69v7q5uLH7d1J43MtTCeWu8NE7zRPQucisZYGwTnfddC1wrZWaUlV8CD1g0EFaRXIgQrpGq8OCXfl9zt3G4gdDDl5Ee3TcPGp72LfnD_KtOwdqu4c9YIaxQvAWevASk-z4DZPcXyH2VnxzUzjBplbHHxxdWliJigf5vAqPuNxi1oXEHjXtA4U5q-vt_treUPi2IQiwGLNK0g_Z39n9hfF1WeCw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Jingyi</creator><creator>Shao, Jichun</creator><creator>Zeng, Zhijun</creator><creator>He, Yumin</creator><creator>Tang, Can</creator><creator>Park, Su Hwan</creator><creator>Lee, Jong-Ho</creator><creator>Liu, Rui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8757-3159</orcidid></search><sort><creationdate>20220101</creationdate><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><author>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/337</topic><topic>631/67/2327</topic><topic>82/51</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Extracellular matrix</topic><topic>Glycolysis</topic><topic>Life Sciences</topic><topic>Ligases - metabolism</topic><topic>Mechanical properties</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Nucleotides - metabolism</topic><topic>Phosphoribosyl Pyrophosphate</topic><topic>Phosphorylation</topic><topic>Ribose-Phosphate Pyrophosphokinase - genetics</topic><topic>Ribose-Phosphate Pyrophosphokinase - metabolism</topic><topic>Stem Cells</topic><topic>TRAF2 protein</topic><topic>Tumor cells</topic><topic>Tumor necrosis factor</topic><topic>Tumor necrosis factor receptors</topic><topic>Tumor suppressor genes</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingyi</creatorcontrib><creatorcontrib>Shao, Jichun</creatorcontrib><creatorcontrib>Zeng, Zhijun</creatorcontrib><creatorcontrib>He, Yumin</creatorcontrib><creatorcontrib>Tang, Can</creatorcontrib><creatorcontrib>Park, Su Hwan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingyi</au><au>Shao, Jichun</au><au>Zeng, Zhijun</au><au>He, Yumin</au><au>Tang, Can</au><au>Park, Su Hwan</au><au>Lee, Jong-Ho</au><au>Liu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><spage>206</spage><epage>217</epage><pages>206-217</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34465890</pmid><doi>10.1038/s41418-021-00851-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8757-3159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2022-01, Vol.29 (1), p.206-217
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8738752
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 631/337
631/67/2327
82/51
82/80
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Extracellular matrix
Glycolysis
Life Sciences
Ligases - metabolism
Mechanical properties
Metabolism
Metastases
Nucleotides - metabolism
Phosphoribosyl Pyrophosphate
Phosphorylation
Ribose-Phosphate Pyrophosphokinase - genetics
Ribose-Phosphate Pyrophosphokinase - metabolism
Stem Cells
TRAF2 protein
Tumor cells
Tumor necrosis factor
Tumor necrosis factor receptors
Tumor suppressor genes
Ubiquitination
title Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosensitive%20turnover%20of%20phosphoribosyl%20pyrophosphate%20synthetases%20regulates%20nucleotide%20metabolism&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Li,%20Jingyi&rft.date=2022-01-01&rft.volume=29&rft.issue=1&rft.spage=206&rft.epage=217&rft.pages=206-217&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-021-00851-7&rft_dat=%3Cproquest_pubme%3E2617107578%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617107578&rft_id=info:pmid/34465890&rfr_iscdi=true