Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism
Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2022-01, Vol.29 (1), p.206-217 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 1 |
container_start_page | 206 |
container_title | Cell death and differentiation |
container_volume | 29 |
creator | Li, Jingyi Shao, Jichun Zeng, Zhijun He, Yumin Tang, Can Park, Su Hwan Lee, Jong-Ho Liu, Rui |
description | Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming. |
doi_str_mv | 10.1038/s41418-021-00851-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8738752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617107578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVJaB7tH-iiGLJ2qrfkTaGE5gEJ2SRrIVvjex18rRuNfOH--6pxmqabLoTEnDNnBn2EfGH0nFFhv6FkktmaclZTahWrzQdyzKTRtZJUHJS3ULRuqDRH5ATxiVKqTaM_kiMhpVa2occE7qBb-ykiTDjkYQdVntMUd5Cq2FfbdcRy0tBG3I_Vdp_iUvIZKtxPeQ3ZI2CVYDWPpYjVNHcjxDwEqDZFbOM44OYTOez9iPD59T4lj5c_Hy6u69v7q5uLH7d1J43MtTCeWu8NE7zRPQucisZYGwTnfddC1wrZWaUlV8CD1g0EFaRXIgQrpGq8OCXfl9zt3G4gdDDl5Ee3TcPGp72LfnD_KtOwdqu4c9YIaxQvAWevASk-z4DZPcXyH2VnxzUzjBplbHHxxdWliJigf5vAqPuNxi1oXEHjXtA4U5q-vt_treUPi2IQiwGLNK0g_Z39n9hfF1WeCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617107578</pqid></control><display><type>article</type><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</creator><creatorcontrib>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</creatorcontrib><description>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-021-00851-7</identifier><identifier>PMID: 34465890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/67/2327 ; 82/51 ; 82/80 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Extracellular matrix ; Glycolysis ; Life Sciences ; Ligases - metabolism ; Mechanical properties ; Metabolism ; Metastases ; Nucleotides - metabolism ; Phosphoribosyl Pyrophosphate ; Phosphorylation ; Ribose-Phosphate Pyrophosphokinase - genetics ; Ribose-Phosphate Pyrophosphokinase - metabolism ; Stem Cells ; TRAF2 protein ; Tumor cells ; Tumor necrosis factor ; Tumor necrosis factor receptors ; Tumor suppressor genes ; Ubiquitination</subject><ispartof>Cell death and differentiation, 2022-01, Vol.29 (1), p.206-217</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2021</rights><rights>2021. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</citedby><cites>FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</cites><orcidid>0000-0001-8757-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738752/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738752/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34465890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingyi</creatorcontrib><creatorcontrib>Shao, Jichun</creatorcontrib><creatorcontrib>Zeng, Zhijun</creatorcontrib><creatorcontrib>He, Yumin</creatorcontrib><creatorcontrib>Tang, Can</creatorcontrib><creatorcontrib>Park, Su Hwan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</description><subject>631/337</subject><subject>631/67/2327</subject><subject>82/51</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Extracellular matrix</subject><subject>Glycolysis</subject><subject>Life Sciences</subject><subject>Ligases - metabolism</subject><subject>Mechanical properties</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Nucleotides - metabolism</subject><subject>Phosphoribosyl Pyrophosphate</subject><subject>Phosphorylation</subject><subject>Ribose-Phosphate Pyrophosphokinase - genetics</subject><subject>Ribose-Phosphate Pyrophosphokinase - metabolism</subject><subject>Stem Cells</subject><subject>TRAF2 protein</subject><subject>Tumor cells</subject><subject>Tumor necrosis factor</subject><subject>Tumor necrosis factor receptors</subject><subject>Tumor suppressor genes</subject><subject>Ubiquitination</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3TAQhUVJaB7tH-iiGLJ2qrfkTaGE5gEJ2SRrIVvjex18rRuNfOH--6pxmqabLoTEnDNnBn2EfGH0nFFhv6FkktmaclZTahWrzQdyzKTRtZJUHJS3ULRuqDRH5ATxiVKqTaM_kiMhpVa2occE7qBb-ykiTDjkYQdVntMUd5Cq2FfbdcRy0tBG3I_Vdp_iUvIZKtxPeQ3ZI2CVYDWPpYjVNHcjxDwEqDZFbOM44OYTOez9iPD59T4lj5c_Hy6u69v7q5uLH7d1J43MtTCeWu8NE7zRPQucisZYGwTnfddC1wrZWaUlV8CD1g0EFaRXIgQrpGq8OCXfl9zt3G4gdDDl5Ee3TcPGp72LfnD_KtOwdqu4c9YIaxQvAWevASk-z4DZPcXyH2VnxzUzjBplbHHxxdWliJigf5vAqPuNxi1oXEHjXtA4U5q-vt_treUPi2IQiwGLNK0g_Z39n9hfF1WeCw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Jingyi</creator><creator>Shao, Jichun</creator><creator>Zeng, Zhijun</creator><creator>He, Yumin</creator><creator>Tang, Can</creator><creator>Park, Su Hwan</creator><creator>Lee, Jong-Ho</creator><creator>Liu, Rui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8757-3159</orcidid></search><sort><creationdate>20220101</creationdate><title>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</title><author>Li, Jingyi ; Shao, Jichun ; Zeng, Zhijun ; He, Yumin ; Tang, Can ; Park, Su Hwan ; Lee, Jong-Ho ; Liu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-37a08aa713296f1d2039788d322fcbecb34c856425e2d669ed5d4a53dd83459a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/337</topic><topic>631/67/2327</topic><topic>82/51</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Extracellular matrix</topic><topic>Glycolysis</topic><topic>Life Sciences</topic><topic>Ligases - metabolism</topic><topic>Mechanical properties</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Nucleotides - metabolism</topic><topic>Phosphoribosyl Pyrophosphate</topic><topic>Phosphorylation</topic><topic>Ribose-Phosphate Pyrophosphokinase - genetics</topic><topic>Ribose-Phosphate Pyrophosphokinase - metabolism</topic><topic>Stem Cells</topic><topic>TRAF2 protein</topic><topic>Tumor cells</topic><topic>Tumor necrosis factor</topic><topic>Tumor necrosis factor receptors</topic><topic>Tumor suppressor genes</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingyi</creatorcontrib><creatorcontrib>Shao, Jichun</creatorcontrib><creatorcontrib>Zeng, Zhijun</creatorcontrib><creatorcontrib>He, Yumin</creatorcontrib><creatorcontrib>Tang, Can</creatorcontrib><creatorcontrib>Park, Su Hwan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingyi</au><au>Shao, Jichun</au><au>Zeng, Zhijun</au><au>He, Yumin</au><au>Tang, Can</au><au>Park, Su Hwan</au><au>Lee, Jong-Ho</au><au>Liu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><spage>206</spage><epage>217</epage><pages>206-217</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34465890</pmid><doi>10.1038/s41418-021-00851-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8757-3159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2022-01, Vol.29 (1), p.206-217 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8738752 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | 631/337 631/67/2327 82/51 82/80 Apoptosis Biochemistry Biomedical and Life Sciences Cell Biology Cell Cycle Analysis Extracellular matrix Glycolysis Life Sciences Ligases - metabolism Mechanical properties Metabolism Metastases Nucleotides - metabolism Phosphoribosyl Pyrophosphate Phosphorylation Ribose-Phosphate Pyrophosphokinase - genetics Ribose-Phosphate Pyrophosphokinase - metabolism Stem Cells TRAF2 protein Tumor cells Tumor necrosis factor Tumor necrosis factor receptors Tumor suppressor genes Ubiquitination |
title | Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosensitive%20turnover%20of%20phosphoribosyl%20pyrophosphate%20synthetases%20regulates%20nucleotide%20metabolism&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Li,%20Jingyi&rft.date=2022-01-01&rft.volume=29&rft.issue=1&rft.spage=206&rft.epage=217&rft.pages=206-217&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-021-00851-7&rft_dat=%3Cproquest_pubme%3E2617107578%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617107578&rft_id=info:pmid/34465890&rfr_iscdi=true |