Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes

In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, robot, or human) using RSSI signals measured from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2022-02, Vol.60 (2), p.439-458
Hauptverfasser: Booranawong, Apidet, Thammachote, Peeradon, Sasiwat, Yoschanin, Auysakul, Jutamanee, Sengchuai, Kiattisak, Buranapanichkit, Dujdow, Tanthanuch, Sawit, Jindapetch, Nattha, Saito, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 439
container_title Medical & biological engineering & computing
container_volume 60
creator Booranawong, Apidet
Thammachote, Peeradon
Sasiwat, Yoschanin
Auysakul, Jutamanee
Sengchuai, Kiattisak
Buranapanichkit, Dujdow
Tanthanuch, Sawit
Jindapetch, Nattha
Saito, Hiroshi
description In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, robot, or human) using RSSI signals measured from two stationary reference nodes located at the different sides of the corridor are proposed. A filter with its optimal weight value is also applied to smoothen and increase the accuracy of estimated position results (i.e., the x-position in the corridor). Additionally, a determination approach for finding the optimal parameters assigned for the proposed tracking methods and the filter are also introduced. The proposed methods are implemented in MATLAB/Simulink, and experiments using a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have been carried out in the indoor corridor of the hospital building. Experimental results obtained from the corridor size of 22 m demonstrate that our proposed methods can automatically and efficiently track the moving target in real time. The average distance errors, in the case of varying and manual tuning the optimal parameters of the proposed methods and the filter, reduce from 5.14 to 1.01 m and 4.55 to 0.86 m (i.e., two test cases; slow moving speed and double moving speed). Here, the errors decrease by 80.35% and 81.10%, respectively. For the case using the optimal parameters determined by the optimization approach, the average errors can reduce to 0.97 m for the first test case and 0.78 m for the second test case, respectively. Graphical abstract An RSSI-based real-time tracking system for a moving target in an indoor corridor of the hospital building
doi_str_mv 10.1007/s11517-021-02489-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618236690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-583f3193cad516bd868a1ca9c4b3f6cdffd15d12b4b04537cd7827fdff60ee5c3</originalsourceid><addsrcrecordid>eNp9kc9vFSEQx4nR2NfqP-DBkHjxshYWFtiLiWm0NmnSpNUzYWF2H3UXnrD7Gv8E_2tZX60_Dh4YhuEzAzNfhF5Q8oYSIk8zpQ2VFalpWVy1lXiENlTycuScP0YbQjmpCKXqCB3nfEsK2dT8KTpivG2ZaOsN-n4NZqxmPwGek7FffBhw7LHBU9yv_mzSADP2AZtQrIsxYRtT8q44BZy3gLcx7_xsRtwtfnRr1pJXe31zc4GzH4IZM05gwe_B4T7FCc93sUR6SBAs4BAd5GfoSV9AeH6_n6DPH95_OvtYXV6dX5y9u6wsl3yuGsV6RltmjWuo6JwSylBrWss71gvr-t7RxtG64x3hDZPWSVXLvsQFAWgsO0FvD3V3SzeBsxBK46PeJT-Z9E1H4_XfN8Fv9RD3WknWSKZKgdf3BVL8ukCe9eSzhXE0AeKSdS2oqpkQLSnoq3_Q27ikdR6FqklLZKN4oeoDZVPMuYzl4TOU6FVpfVBaF_30T6W1KEkv_2zjIeWXtAVgByCXqzBA-v32f8r-AN8wty0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620907584</pqid></control><display><type>article</type><title>Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Booranawong, Apidet ; Thammachote, Peeradon ; Sasiwat, Yoschanin ; Auysakul, Jutamanee ; Sengchuai, Kiattisak ; Buranapanichkit, Dujdow ; Tanthanuch, Sawit ; Jindapetch, Nattha ; Saito, Hiroshi</creator><creatorcontrib>Booranawong, Apidet ; Thammachote, Peeradon ; Sasiwat, Yoschanin ; Auysakul, Jutamanee ; Sengchuai, Kiattisak ; Buranapanichkit, Dujdow ; Tanthanuch, Sawit ; Jindapetch, Nattha ; Saito, Hiroshi</creatorcontrib><description>In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, robot, or human) using RSSI signals measured from two stationary reference nodes located at the different sides of the corridor are proposed. A filter with its optimal weight value is also applied to smoothen and increase the accuracy of estimated position results (i.e., the x-position in the corridor). Additionally, a determination approach for finding the optimal parameters assigned for the proposed tracking methods and the filter are also introduced. The proposed methods are implemented in MATLAB/Simulink, and experiments using a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have been carried out in the indoor corridor of the hospital building. Experimental results obtained from the corridor size of 22 m demonstrate that our proposed methods can automatically and efficiently track the moving target in real time. The average distance errors, in the case of varying and manual tuning the optimal parameters of the proposed methods and the filter, reduce from 5.14 to 1.01 m and 4.55 to 0.86 m (i.e., two test cases; slow moving speed and double moving speed). Here, the errors decrease by 80.35% and 81.10%, respectively. For the case using the optimal parameters determined by the optimization approach, the average errors can reduce to 0.97 m for the first test case and 0.78 m for the second test case, respectively. Graphical abstract An RSSI-based real-time tracking system for a moving target in an indoor corridor of the hospital building</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02489-6</identifier><identifier>PMID: 34993692</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Computer Systems ; Errors ; Hospitals ; Human Physiology ; Humans ; Imaging ; Indoor environments ; Moving targets ; Nodes ; Optimization ; Original ; Original Article ; Parameters ; Radiology ; Real time ; Signal strength ; Tracking systems ; Wireless networks</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2022-02, Vol.60 (2), p.439-458</ispartof><rights>International Federation for Medical and Biological Engineering 2022</rights><rights>2022. International Federation for Medical and Biological Engineering.</rights><rights>International Federation for Medical and Biological Engineering 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-583f3193cad516bd868a1ca9c4b3f6cdffd15d12b4b04537cd7827fdff60ee5c3</citedby><cites>FETCH-LOGICAL-c474t-583f3193cad516bd868a1ca9c4b3f6cdffd15d12b4b04537cd7827fdff60ee5c3</cites><orcidid>0000-0002-5346-1594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02489-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02489-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34993692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Booranawong, Apidet</creatorcontrib><creatorcontrib>Thammachote, Peeradon</creatorcontrib><creatorcontrib>Sasiwat, Yoschanin</creatorcontrib><creatorcontrib>Auysakul, Jutamanee</creatorcontrib><creatorcontrib>Sengchuai, Kiattisak</creatorcontrib><creatorcontrib>Buranapanichkit, Dujdow</creatorcontrib><creatorcontrib>Tanthanuch, Sawit</creatorcontrib><creatorcontrib>Jindapetch, Nattha</creatorcontrib><creatorcontrib>Saito, Hiroshi</creatorcontrib><title>Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, robot, or human) using RSSI signals measured from two stationary reference nodes located at the different sides of the corridor are proposed. A filter with its optimal weight value is also applied to smoothen and increase the accuracy of estimated position results (i.e., the x-position in the corridor). Additionally, a determination approach for finding the optimal parameters assigned for the proposed tracking methods and the filter are also introduced. The proposed methods are implemented in MATLAB/Simulink, and experiments using a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have been carried out in the indoor corridor of the hospital building. Experimental results obtained from the corridor size of 22 m demonstrate that our proposed methods can automatically and efficiently track the moving target in real time. The average distance errors, in the case of varying and manual tuning the optimal parameters of the proposed methods and the filter, reduce from 5.14 to 1.01 m and 4.55 to 0.86 m (i.e., two test cases; slow moving speed and double moving speed). Here, the errors decrease by 80.35% and 81.10%, respectively. For the case using the optimal parameters determined by the optimization approach, the average errors can reduce to 0.97 m for the first test case and 0.78 m for the second test case, respectively. Graphical abstract An RSSI-based real-time tracking system for a moving target in an indoor corridor of the hospital building</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Computer Systems</subject><subject>Errors</subject><subject>Hospitals</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Indoor environments</subject><subject>Moving targets</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Original</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Radiology</subject><subject>Real time</subject><subject>Signal strength</subject><subject>Tracking systems</subject><subject>Wireless networks</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9vFSEQx4nR2NfqP-DBkHjxshYWFtiLiWm0NmnSpNUzYWF2H3UXnrD7Gv8E_2tZX60_Dh4YhuEzAzNfhF5Q8oYSIk8zpQ2VFalpWVy1lXiENlTycuScP0YbQjmpCKXqCB3nfEsK2dT8KTpivG2ZaOsN-n4NZqxmPwGek7FffBhw7LHBU9yv_mzSADP2AZtQrIsxYRtT8q44BZy3gLcx7_xsRtwtfnRr1pJXe31zc4GzH4IZM05gwe_B4T7FCc93sUR6SBAs4BAd5GfoSV9AeH6_n6DPH95_OvtYXV6dX5y9u6wsl3yuGsV6RltmjWuo6JwSylBrWss71gvr-t7RxtG64x3hDZPWSVXLvsQFAWgsO0FvD3V3SzeBsxBK46PeJT-Z9E1H4_XfN8Fv9RD3WknWSKZKgdf3BVL8ukCe9eSzhXE0AeKSdS2oqpkQLSnoq3_Q27ikdR6FqklLZKN4oeoDZVPMuYzl4TOU6FVpfVBaF_30T6W1KEkv_2zjIeWXtAVgByCXqzBA-v32f8r-AN8wty0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Booranawong, Apidet</creator><creator>Thammachote, Peeradon</creator><creator>Sasiwat, Yoschanin</creator><creator>Auysakul, Jutamanee</creator><creator>Sengchuai, Kiattisak</creator><creator>Buranapanichkit, Dujdow</creator><creator>Tanthanuch, Sawit</creator><creator>Jindapetch, Nattha</creator><creator>Saito, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5346-1594</orcidid></search><sort><creationdate>20220201</creationdate><title>Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes</title><author>Booranawong, Apidet ; Thammachote, Peeradon ; Sasiwat, Yoschanin ; Auysakul, Jutamanee ; Sengchuai, Kiattisak ; Buranapanichkit, Dujdow ; Tanthanuch, Sawit ; Jindapetch, Nattha ; Saito, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-583f3193cad516bd868a1ca9c4b3f6cdffd15d12b4b04537cd7827fdff60ee5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Computer Systems</topic><topic>Errors</topic><topic>Hospitals</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Indoor environments</topic><topic>Moving targets</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Original</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Radiology</topic><topic>Real time</topic><topic>Signal strength</topic><topic>Tracking systems</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booranawong, Apidet</creatorcontrib><creatorcontrib>Thammachote, Peeradon</creatorcontrib><creatorcontrib>Sasiwat, Yoschanin</creatorcontrib><creatorcontrib>Auysakul, Jutamanee</creatorcontrib><creatorcontrib>Sengchuai, Kiattisak</creatorcontrib><creatorcontrib>Buranapanichkit, Dujdow</creatorcontrib><creatorcontrib>Tanthanuch, Sawit</creatorcontrib><creatorcontrib>Jindapetch, Nattha</creatorcontrib><creatorcontrib>Saito, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booranawong, Apidet</au><au>Thammachote, Peeradon</au><au>Sasiwat, Yoschanin</au><au>Auysakul, Jutamanee</au><au>Sengchuai, Kiattisak</au><au>Buranapanichkit, Dujdow</au><au>Tanthanuch, Sawit</au><au>Jindapetch, Nattha</au><au>Saito, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>439</spage><epage>458</epage><pages>439-458</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>In this paper, implementation and validation of a target tracking system based on the received signal strength indicator (RSSI) for an indoor corridor environment of the hospital is presented. Six tracking methods of a moving target (i.e., equipment, robot, or human) using RSSI signals measured from two stationary reference nodes located at the different sides of the corridor are proposed. A filter with its optimal weight value is also applied to smoothen and increase the accuracy of estimated position results (i.e., the x-position in the corridor). Additionally, a determination approach for finding the optimal parameters assigned for the proposed tracking methods and the filter are also introduced. The proposed methods are implemented in MATLAB/Simulink, and experiments using a 2.4 GHz, IEEE 802.15.4/ZigBee wireless network have been carried out in the indoor corridor of the hospital building. Experimental results obtained from the corridor size of 22 m demonstrate that our proposed methods can automatically and efficiently track the moving target in real time. The average distance errors, in the case of varying and manual tuning the optimal parameters of the proposed methods and the filter, reduce from 5.14 to 1.01 m and 4.55 to 0.86 m (i.e., two test cases; slow moving speed and double moving speed). Here, the errors decrease by 80.35% and 81.10%, respectively. For the case using the optimal parameters determined by the optimization approach, the average errors can reduce to 0.97 m for the first test case and 0.78 m for the second test case, respectively. Graphical abstract An RSSI-based real-time tracking system for a moving target in an indoor corridor of the hospital building</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34993692</pmid><doi>10.1007/s11517-021-02489-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5346-1594</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2022-02, Vol.60 (2), p.439-458
issn 0140-0118
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735738
source MEDLINE; SpringerLink Journals; EBSCOhost Business Source Complete
subjects Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer Applications
Computer Systems
Errors
Hospitals
Human Physiology
Humans
Imaging
Indoor environments
Moving targets
Nodes
Optimization
Original
Original Article
Parameters
Radiology
Real time
Signal strength
Tracking systems
Wireless networks
title Real-time tracking of a moving target in an indoor corridor of the hospital building using RSSI signals received from two reference nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20tracking%20of%20a%20moving%20target%20in%20an%20indoor%20corridor%20of%20the%20hospital%20building%20using%20RSSI%20signals%20received%20from%20two%20reference%20nodes&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Booranawong,%20Apidet&rft.date=2022-02-01&rft.volume=60&rft.issue=2&rft.spage=439&rft.epage=458&rft.pages=439-458&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02489-6&rft_dat=%3Cproquest_pubme%3E2618236690%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620907584&rft_id=info:pmid/34993692&rfr_iscdi=true