A Statistical Method for Association Analysis of Cell Type Compositions
Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition e...
Gespeichert in:
Veröffentlicht in: | Statistics in biosciences 2021-12, Vol.13 (3), p.373-385 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Statistics in biosciences |
container_volume | 13 |
creator | Huang, Licai Little, Paul Huyghe, Jeroen R. Shi, Qian Harrison, Tabitha A. Yothers, Greg George, Thomas J. Peters, Ulrike Chan, Andrew T. Newcomb, Polly A. Sun, Wei |
description | Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition. |
doi_str_mv | 10.1007/s12561-020-09293-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588419657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS1UVCj0C3CoLPXSy7Yz9vrfBSmKWqhExQE4W17HC0abdWpvKuXbYxoIlENPY-n95s2MHyEnCF8RQH0ryITEBhg0YJjhDeyRQ9RSNagUe7d7y_aAfCjlHkBKZcx7csAFAOdKH5KzGb2a3BTLFL0b6K8w3aUF7VOms1KSj1VKI52NbtiUWGjq6TwMA73erAKdp-UqlfhIlGOy37uhhI9P9Yjc_Ph-PT9vLi7Pfs5nF41vmZgajcIZ4yRf9MiMRMEdCg2dFKzjAdF506mOty4oAKE7B9wI7zvHWC_DouVH5HTru1p3y7DwYZyyG-wqx6XLG5tctP8qY7yzt-mP1YoLJrEafHkyyOn3OpTJLmPx9SY3hrQutjJaIArQFf38Br1P61y_olJC6xaNFKpSbEv5nErJod8tg2Afc7LbnGzNyf7NyUJt-vT6jF3LczAV4FugVGm8Dfll9n9sHwDLKJ2M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588419657</pqid></control><display><type>article</type><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><source>SpringerNature Journals</source><creator>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</creator><creatorcontrib>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</creatorcontrib><description>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</description><identifier>ISSN: 1867-1764</identifier><identifier>EISSN: 1867-1772</identifier><identifier>DOI: 10.1007/s12561-020-09293-0</identifier><identifier>PMID: 35003378</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Association analysis ; Biostatistics ; Colorectal carcinoma ; Composition ; Gene expression ; Genetic diversity ; Genotypes ; Health Sciences ; Immune system ; Mathematics and Statistics ; Medicine ; Single-nucleotide polymorphism ; Statistical methods ; Statistics ; Statistics for Life Sciences ; Survival ; Theoretical Ecology/Statistics ; Tumors</subject><ispartof>Statistics in biosciences, 2021-12, Vol.13 (3), p.373-385</ispartof><rights>International Chinese Statistical Association 2020</rights><rights>International Chinese Statistical Association 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</cites><orcidid>0000-0002-6350-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12561-020-09293-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12561-020-09293-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35003378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Licai</creatorcontrib><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Huyghe, Jeroen R.</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Harrison, Tabitha A.</creatorcontrib><creatorcontrib>Yothers, Greg</creatorcontrib><creatorcontrib>George, Thomas J.</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Chan, Andrew T.</creatorcontrib><creatorcontrib>Newcomb, Polly A.</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><title>Statistics in biosciences</title><addtitle>Stat Biosci</addtitle><addtitle>Stat Biosci</addtitle><description>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</description><subject>Association analysis</subject><subject>Biostatistics</subject><subject>Colorectal carcinoma</subject><subject>Composition</subject><subject>Gene expression</subject><subject>Genetic diversity</subject><subject>Genotypes</subject><subject>Health Sciences</subject><subject>Immune system</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>Survival</subject><subject>Theoretical Ecology/Statistics</subject><subject>Tumors</subject><issn>1867-1764</issn><issn>1867-1772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS1UVCj0C3CoLPXSy7Yz9vrfBSmKWqhExQE4W17HC0abdWpvKuXbYxoIlENPY-n95s2MHyEnCF8RQH0ryITEBhg0YJjhDeyRQ9RSNagUe7d7y_aAfCjlHkBKZcx7csAFAOdKH5KzGb2a3BTLFL0b6K8w3aUF7VOms1KSj1VKI52NbtiUWGjq6TwMA73erAKdp-UqlfhIlGOy37uhhI9P9Yjc_Ph-PT9vLi7Pfs5nF41vmZgajcIZ4yRf9MiMRMEdCg2dFKzjAdF506mOty4oAKE7B9wI7zvHWC_DouVH5HTru1p3y7DwYZyyG-wqx6XLG5tctP8qY7yzt-mP1YoLJrEafHkyyOn3OpTJLmPx9SY3hrQutjJaIArQFf38Br1P61y_olJC6xaNFKpSbEv5nErJod8tg2Afc7LbnGzNyf7NyUJt-vT6jF3LczAV4FugVGm8Dfll9n9sHwDLKJ2M</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Huang, Licai</creator><creator>Little, Paul</creator><creator>Huyghe, Jeroen R.</creator><creator>Shi, Qian</creator><creator>Harrison, Tabitha A.</creator><creator>Yothers, Greg</creator><creator>George, Thomas J.</creator><creator>Peters, Ulrike</creator><creator>Chan, Andrew T.</creator><creator>Newcomb, Polly A.</creator><creator>Sun, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6350-1107</orcidid></search><sort><creationdate>20211201</creationdate><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><author>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Association analysis</topic><topic>Biostatistics</topic><topic>Colorectal carcinoma</topic><topic>Composition</topic><topic>Gene expression</topic><topic>Genetic diversity</topic><topic>Genotypes</topic><topic>Health Sciences</topic><topic>Immune system</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>Survival</topic><topic>Theoretical Ecology/Statistics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Licai</creatorcontrib><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Huyghe, Jeroen R.</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Harrison, Tabitha A.</creatorcontrib><creatorcontrib>Yothers, Greg</creatorcontrib><creatorcontrib>George, Thomas J.</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Chan, Andrew T.</creatorcontrib><creatorcontrib>Newcomb, Polly A.</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Licai</au><au>Little, Paul</au><au>Huyghe, Jeroen R.</au><au>Shi, Qian</au><au>Harrison, Tabitha A.</au><au>Yothers, Greg</au><au>George, Thomas J.</au><au>Peters, Ulrike</au><au>Chan, Andrew T.</au><au>Newcomb, Polly A.</au><au>Sun, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Method for Association Analysis of Cell Type Compositions</atitle><jtitle>Statistics in biosciences</jtitle><stitle>Stat Biosci</stitle><addtitle>Stat Biosci</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>373</spage><epage>385</epage><pages>373-385</pages><issn>1867-1764</issn><eissn>1867-1772</eissn><abstract>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35003378</pmid><doi>10.1007/s12561-020-09293-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6350-1107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-1764 |
ispartof | Statistics in biosciences, 2021-12, Vol.13 (3), p.373-385 |
issn | 1867-1764 1867-1772 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735261 |
source | SpringerNature Journals |
subjects | Association analysis Biostatistics Colorectal carcinoma Composition Gene expression Genetic diversity Genotypes Health Sciences Immune system Mathematics and Statistics Medicine Single-nucleotide polymorphism Statistical methods Statistics Statistics for Life Sciences Survival Theoretical Ecology/Statistics Tumors |
title | A Statistical Method for Association Analysis of Cell Type Compositions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Method%20for%20Association%20Analysis%20of%20Cell%20Type%20Compositions&rft.jtitle=Statistics%20in%20biosciences&rft.au=Huang,%20Licai&rft.date=2021-12-01&rft.volume=13&rft.issue=3&rft.spage=373&rft.epage=385&rft.pages=373-385&rft.issn=1867-1764&rft.eissn=1867-1772&rft_id=info:doi/10.1007/s12561-020-09293-0&rft_dat=%3Cproquest_pubme%3E2588419657%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588419657&rft_id=info:pmid/35003378&rfr_iscdi=true |