A Statistical Method for Association Analysis of Cell Type Compositions

Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in biosciences 2021-12, Vol.13 (3), p.373-385
Hauptverfasser: Huang, Licai, Little, Paul, Huyghe, Jeroen R., Shi, Qian, Harrison, Tabitha A., Yothers, Greg, George, Thomas J., Peters, Ulrike, Chan, Andrew T., Newcomb, Polly A., Sun, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 3
container_start_page 373
container_title Statistics in biosciences
container_volume 13
creator Huang, Licai
Little, Paul
Huyghe, Jeroen R.
Shi, Qian
Harrison, Tabitha A.
Yothers, Greg
George, Thomas J.
Peters, Ulrike
Chan, Andrew T.
Newcomb, Polly A.
Sun, Wei
description Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.
doi_str_mv 10.1007/s12561-020-09293-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588419657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS1UVCj0C3CoLPXSy7Yz9vrfBSmKWqhExQE4W17HC0abdWpvKuXbYxoIlENPY-n95s2MHyEnCF8RQH0ryITEBhg0YJjhDeyRQ9RSNagUe7d7y_aAfCjlHkBKZcx7csAFAOdKH5KzGb2a3BTLFL0b6K8w3aUF7VOms1KSj1VKI52NbtiUWGjq6TwMA73erAKdp-UqlfhIlGOy37uhhI9P9Yjc_Ph-PT9vLi7Pfs5nF41vmZgajcIZ4yRf9MiMRMEdCg2dFKzjAdF506mOty4oAKE7B9wI7zvHWC_DouVH5HTru1p3y7DwYZyyG-wqx6XLG5tctP8qY7yzt-mP1YoLJrEafHkyyOn3OpTJLmPx9SY3hrQutjJaIArQFf38Br1P61y_olJC6xaNFKpSbEv5nErJod8tg2Afc7LbnGzNyf7NyUJt-vT6jF3LczAV4FugVGm8Dfll9n9sHwDLKJ2M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588419657</pqid></control><display><type>article</type><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><source>SpringerNature Journals</source><creator>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</creator><creatorcontrib>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</creatorcontrib><description>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</description><identifier>ISSN: 1867-1764</identifier><identifier>EISSN: 1867-1772</identifier><identifier>DOI: 10.1007/s12561-020-09293-0</identifier><identifier>PMID: 35003378</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Association analysis ; Biostatistics ; Colorectal carcinoma ; Composition ; Gene expression ; Genetic diversity ; Genotypes ; Health Sciences ; Immune system ; Mathematics and Statistics ; Medicine ; Single-nucleotide polymorphism ; Statistical methods ; Statistics ; Statistics for Life Sciences ; Survival ; Theoretical Ecology/Statistics ; Tumors</subject><ispartof>Statistics in biosciences, 2021-12, Vol.13 (3), p.373-385</ispartof><rights>International Chinese Statistical Association 2020</rights><rights>International Chinese Statistical Association 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</cites><orcidid>0000-0002-6350-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12561-020-09293-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12561-020-09293-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35003378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Licai</creatorcontrib><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Huyghe, Jeroen R.</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Harrison, Tabitha A.</creatorcontrib><creatorcontrib>Yothers, Greg</creatorcontrib><creatorcontrib>George, Thomas J.</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Chan, Andrew T.</creatorcontrib><creatorcontrib>Newcomb, Polly A.</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><title>Statistics in biosciences</title><addtitle>Stat Biosci</addtitle><addtitle>Stat Biosci</addtitle><description>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</description><subject>Association analysis</subject><subject>Biostatistics</subject><subject>Colorectal carcinoma</subject><subject>Composition</subject><subject>Gene expression</subject><subject>Genetic diversity</subject><subject>Genotypes</subject><subject>Health Sciences</subject><subject>Immune system</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>Survival</subject><subject>Theoretical Ecology/Statistics</subject><subject>Tumors</subject><issn>1867-1764</issn><issn>1867-1772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS1UVCj0C3CoLPXSy7Yz9vrfBSmKWqhExQE4W17HC0abdWpvKuXbYxoIlENPY-n95s2MHyEnCF8RQH0ryITEBhg0YJjhDeyRQ9RSNagUe7d7y_aAfCjlHkBKZcx7csAFAOdKH5KzGb2a3BTLFL0b6K8w3aUF7VOms1KSj1VKI52NbtiUWGjq6TwMA73erAKdp-UqlfhIlGOy37uhhI9P9Yjc_Ph-PT9vLi7Pfs5nF41vmZgajcIZ4yRf9MiMRMEdCg2dFKzjAdF506mOty4oAKE7B9wI7zvHWC_DouVH5HTru1p3y7DwYZyyG-wqx6XLG5tctP8qY7yzt-mP1YoLJrEafHkyyOn3OpTJLmPx9SY3hrQutjJaIArQFf38Br1P61y_olJC6xaNFKpSbEv5nErJod8tg2Afc7LbnGzNyf7NyUJt-vT6jF3LczAV4FugVGm8Dfll9n9sHwDLKJ2M</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Huang, Licai</creator><creator>Little, Paul</creator><creator>Huyghe, Jeroen R.</creator><creator>Shi, Qian</creator><creator>Harrison, Tabitha A.</creator><creator>Yothers, Greg</creator><creator>George, Thomas J.</creator><creator>Peters, Ulrike</creator><creator>Chan, Andrew T.</creator><creator>Newcomb, Polly A.</creator><creator>Sun, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6350-1107</orcidid></search><sort><creationdate>20211201</creationdate><title>A Statistical Method for Association Analysis of Cell Type Compositions</title><author>Huang, Licai ; Little, Paul ; Huyghe, Jeroen R. ; Shi, Qian ; Harrison, Tabitha A. ; Yothers, Greg ; George, Thomas J. ; Peters, Ulrike ; Chan, Andrew T. ; Newcomb, Polly A. ; Sun, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-815a99a63df1296153a1580b652b3e11ac9b7b34ae70058ba0395ccba22f6ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Association analysis</topic><topic>Biostatistics</topic><topic>Colorectal carcinoma</topic><topic>Composition</topic><topic>Gene expression</topic><topic>Genetic diversity</topic><topic>Genotypes</topic><topic>Health Sciences</topic><topic>Immune system</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>Survival</topic><topic>Theoretical Ecology/Statistics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Licai</creatorcontrib><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Huyghe, Jeroen R.</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Harrison, Tabitha A.</creatorcontrib><creatorcontrib>Yothers, Greg</creatorcontrib><creatorcontrib>George, Thomas J.</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Chan, Andrew T.</creatorcontrib><creatorcontrib>Newcomb, Polly A.</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Licai</au><au>Little, Paul</au><au>Huyghe, Jeroen R.</au><au>Shi, Qian</au><au>Harrison, Tabitha A.</au><au>Yothers, Greg</au><au>George, Thomas J.</au><au>Peters, Ulrike</au><au>Chan, Andrew T.</au><au>Newcomb, Polly A.</au><au>Sun, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Method for Association Analysis of Cell Type Compositions</atitle><jtitle>Statistics in biosciences</jtitle><stitle>Stat Biosci</stitle><addtitle>Stat Biosci</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>373</spage><epage>385</epage><pages>373-385</pages><issn>1867-1764</issn><eissn>1867-1772</eissn><abstract>Gene expression data are often collected from tissue samples that are composed of multiple cell types. Studies of cell type composition based on gene expression data from tissue samples have recently attracted increasing research interest and led to new method development for cell type composition estimation. This new information on cell type composition can be associated with individual characteristics (e.g., genetic variants) or clinical outcomes (e.g., survival time). Such association analysis can be conducted for each cell type separately followed by multiple testing correction. An alternative approach is to evaluate this association using the composition of all the cell types, thus aggregating association signals across cell types. A key challenge of this approach is to account for the dependence across cell types. We propose a new method to quantify the distances between cell types while accounting for their dependencies, and use this information for association analysis. We demonstrate our method in two applied examples: to assess the association between immune cell type composition in tumor samples of colorectal cancer patients versus survival time and SNP genotypes. We found immune cell composition has prognostic value, and our distance metric leads to more accurate survival time prediction than other distance metrics that ignore cell type dependencies. In addition, survival time-associated SNPs are enriched among the SNPs associated with immune cell composition.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35003378</pmid><doi>10.1007/s12561-020-09293-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6350-1107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-1764
ispartof Statistics in biosciences, 2021-12, Vol.13 (3), p.373-385
issn 1867-1764
1867-1772
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8735261
source SpringerNature Journals
subjects Association analysis
Biostatistics
Colorectal carcinoma
Composition
Gene expression
Genetic diversity
Genotypes
Health Sciences
Immune system
Mathematics and Statistics
Medicine
Single-nucleotide polymorphism
Statistical methods
Statistics
Statistics for Life Sciences
Survival
Theoretical Ecology/Statistics
Tumors
title A Statistical Method for Association Analysis of Cell Type Compositions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Method%20for%20Association%20Analysis%20of%20Cell%20Type%20Compositions&rft.jtitle=Statistics%20in%20biosciences&rft.au=Huang,%20Licai&rft.date=2021-12-01&rft.volume=13&rft.issue=3&rft.spage=373&rft.epage=385&rft.pages=373-385&rft.issn=1867-1764&rft.eissn=1867-1772&rft_id=info:doi/10.1007/s12561-020-09293-0&rft_dat=%3Cproquest_pubme%3E2588419657%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588419657&rft_id=info:pmid/35003378&rfr_iscdi=true