Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation
Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless, behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful sto...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (46), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 46 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Kossio, Yaroslav Felipe Kalle Goedeke, Sven Klos, Christian Memmesheimer, Raoul-Martin |
description | Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless, behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity and spontaneous synaptic turnover induce neuron exchange. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs, and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change. |
doi_str_mv | 10.1073/pnas.2023832118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8727022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093882</jstor_id><sourcerecordid>27093882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8eb3f09c446d845a68077076904a3f85a133a6fa469c34f8077af1a762ae7d103</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWqtrV0rBjS6mvXnMJNkIUp9QcKPrkE6TOmVmMiYzQv-9GVrrYxXC-e7hnnsQOsMwxsDppKl1GBMgVFCCsdhDAwwSJxmTsI8GAIQnghF2hI5DWAGATAUcoiPKOCcCyABd3_nCtkW9HOkQTDUvCxNG1vlRY3woQmvqdlSZyvn1CTqwugzmdPsO0dvD_ev0KZm9PD5Pb2dJzhhtE2Hm1IKMn2whWKozAZwDzyQwTa1INaZUZ1azTOaU2V7VFmueEW34AgMdopuNb9PNK7PI4wZel6rxRaX9WjldqL9KXbyrpftUghMOhESDq62Bdx-dCa2qipCbstS1cV1QJJU8jaeRPKKX_9CV63wd4_WUlIyylEZqsqFy70Lwxu6WwaD6GlRfg_qpIU5c_M6w47_vHoHzDbAKrfM7PQaQVAhCvwCY7Iwr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599943453</pqid></control><display><type>article</type><title>Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kossio, Yaroslav Felipe Kalle ; Goedeke, Sven ; Klos, Christian ; Memmesheimer, Raoul-Martin</creator><creatorcontrib>Kossio, Yaroslav Felipe Kalle ; Goedeke, Sven ; Klos, Christian ; Memmesheimer, Raoul-Martin</creatorcontrib><description>Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless, behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity and spontaneous synaptic turnover induce neuron exchange. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs, and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023832118</identifier><identifier>PMID: 34772802</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Assemblies ; Associative memory ; Biological Sciences ; Homeostasis - physiology ; Homeostatic plasticity ; Memory - physiology ; Models, Neurological ; Neural Networks, Computer ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Physical Sciences ; Representations ; Synapses ; Synapses - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (46), p.1-12</ispartof><rights>Copyright National Academy of Sciences Nov 16, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8eb3f09c446d845a68077076904a3f85a133a6fa469c34f8077af1a762ae7d103</citedby><cites>FETCH-LOGICAL-c443t-8eb3f09c446d845a68077076904a3f85a133a6fa469c34f8077af1a762ae7d103</cites><orcidid>0000-0003-0696-6079 ; 0000-0001-5314-345X ; 0000-0001-7434-7523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34772802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kossio, Yaroslav Felipe Kalle</creatorcontrib><creatorcontrib>Goedeke, Sven</creatorcontrib><creatorcontrib>Klos, Christian</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><title>Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless, behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity and spontaneous synaptic turnover induce neuron exchange. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs, and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.</description><subject>Animals</subject><subject>Assemblies</subject><subject>Associative memory</subject><subject>Biological Sciences</subject><subject>Homeostasis - physiology</subject><subject>Homeostatic plasticity</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Neural Networks, Computer</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Physical Sciences</subject><subject>Representations</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLAzEUhYMoWqtrV0rBjS6mvXnMJNkIUp9QcKPrkE6TOmVmMiYzQv-9GVrrYxXC-e7hnnsQOsMwxsDppKl1GBMgVFCCsdhDAwwSJxmTsI8GAIQnghF2hI5DWAGATAUcoiPKOCcCyABd3_nCtkW9HOkQTDUvCxNG1vlRY3woQmvqdlSZyvn1CTqwugzmdPsO0dvD_ev0KZm9PD5Pb2dJzhhtE2Hm1IKMn2whWKozAZwDzyQwTa1INaZUZ1azTOaU2V7VFmueEW34AgMdopuNb9PNK7PI4wZel6rxRaX9WjldqL9KXbyrpftUghMOhESDq62Bdx-dCa2qipCbstS1cV1QJJU8jaeRPKKX_9CV63wd4_WUlIyylEZqsqFy70Lwxu6WwaD6GlRfg_qpIU5c_M6w47_vHoHzDbAKrfM7PQaQVAhCvwCY7Iwr</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Kossio, Yaroslav Felipe Kalle</creator><creator>Goedeke, Sven</creator><creator>Klos, Christian</creator><creator>Memmesheimer, Raoul-Martin</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0696-6079</orcidid><orcidid>https://orcid.org/0000-0001-5314-345X</orcidid><orcidid>https://orcid.org/0000-0001-7434-7523</orcidid></search><sort><creationdate>20211116</creationdate><title>Drifting assemblies for persistent memory</title><author>Kossio, Yaroslav Felipe Kalle ; Goedeke, Sven ; Klos, Christian ; Memmesheimer, Raoul-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8eb3f09c446d845a68077076904a3f85a133a6fa469c34f8077af1a762ae7d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Assemblies</topic><topic>Associative memory</topic><topic>Biological Sciences</topic><topic>Homeostasis - physiology</topic><topic>Homeostatic plasticity</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Neural Networks, Computer</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Physical Sciences</topic><topic>Representations</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kossio, Yaroslav Felipe Kalle</creatorcontrib><creatorcontrib>Goedeke, Sven</creatorcontrib><creatorcontrib>Klos, Christian</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kossio, Yaroslav Felipe Kalle</au><au>Goedeke, Sven</au><au>Klos, Christian</au><au>Memmesheimer, Raoul-Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>118</volume><issue>46</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless, behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity and spontaneous synaptic turnover induce neuron exchange. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs, and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34772802</pmid><doi>10.1073/pnas.2023832118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0696-6079</orcidid><orcidid>https://orcid.org/0000-0001-5314-345X</orcidid><orcidid>https://orcid.org/0000-0001-7434-7523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (46), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8727022 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Assemblies Associative memory Biological Sciences Homeostasis - physiology Homeostatic plasticity Memory - physiology Models, Neurological Neural Networks, Computer Neuronal Plasticity - physiology Neurons Neurons - physiology Physical Sciences Representations Synapses Synapses - physiology |
title | Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drifting%20assemblies%20for%20persistent%20memory:%20Neuron%20transitions%20and%20unsupervised%20compensation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kossio,%20Yaroslav%20Felipe%20Kalle&rft.date=2021-11-16&rft.volume=118&rft.issue=46&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023832118&rft_dat=%3Cjstor_pubme%3E27093882%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599943453&rft_id=info:pmid/34772802&rft_jstor_id=27093882&rfr_iscdi=true |