Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples

MS is the most effective method to directly identify peptides presented on human leukocyte antigen (HLA) molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome, and therefore, these methods are not compatible with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2021, Vol.20, p.100133-100133, Article 100133
Hauptverfasser: Klaeger, Susan, Apffel, Annie, Clauser, Karl R., Sarkizova, Siranush, Oliveira, Giacomo, Rachimi, Suzanna, Le, Phuong M., Tarren, Anna, Chea, Vipheaviny, Abelin, Jennifer G., Braun, David A., Ott, Patrick A., Keshishian, Hasmik, Hacohen, Nir, Keskin, Derin B., Wu, Catherine J., Carr, Steven A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100133
container_issue
container_start_page 100133
container_title Molecular & cellular proteomics
container_volume 20
creator Klaeger, Susan
Apffel, Annie
Clauser, Karl R.
Sarkizova, Siranush
Oliveira, Giacomo
Rachimi, Suzanna
Le, Phuong M.
Tarren, Anna
Chea, Vipheaviny
Abelin, Jennifer G.
Braun, David A.
Ott, Patrick A.
Keshishian, Hasmik
Hacohen, Nir
Keskin, Derin B.
Wu, Catherine J.
Carr, Steven A.
description MS is the most effective method to directly identify peptides presented on human leukocyte antigen (HLA) molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome, and therefore, these methods are not compatible with the often limited amounts of tissue available from clinical tumor samples. Here, we evaluated microscaled basic reversed-phase fractionation to separate HLA peptide samples offline followed by ion mobility coupled to LC–MS/MS for analysis. The combination of these two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone. We demonstrate coverage of HLA immunopeptidomes with up to 8107 distinct peptides starting with as few as 100 million cells. The increased sensitivity obtained using our methods can provide data useful to improve HLA-binding prediction algorithms as well as to enable detection of clinically relevant epitopes such as neoantigens. [Display omitted] •Deep immunopeptidome coverage using liquid and gas phase separation.•Up to 50% more HLA-I peptides using microscaled basic reversed-phase fractionation.•Ion mobility separation (FAIMS) increases HLA-I peptide identifications by up to 58%.•Increased sensitivity provided by these methods enables detection of neoantigens. Here, we evaluated off-line microscaled basic reversed-phase fractionation as well as the use of ion mobility coupled to LC–MS/MS for analysis of peptides presented on HLA-I. The two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone starting with as few as 100 million cells. The increased sensitivity obtained using our methods can enable detection of low abundant but clinically relevant epitopes such as neoantigens.
doi_str_mv 10.1016/j.mcpro.2021.100133
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947621001055</els_id><sourcerecordid>2561912699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3743-9a8a86e944001f74f655e270a67cd2190f2835952c10e0b23dbd1ef5c32390c53</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaElr_YLAkHLbjzRw7KtRQJhaB4wkIEka6GRrhMNtuWR7IH066OJk6HddKMr7j3n3MdB6IySGSW0uFjPWtMHP2OE0ZQhlPMDdEwFF5nMq_zb_l8WR-gkxjUhjNBSHKIjnnNJq6o6RpuHfnCt-wMWL9xmdBbrzuJbHfHyVUfAN0GbwflO7x5835kAKR3x3eI6W0LiWt8CnvstBP0CuPYBL4NrdXjDc2iaD7UnF-MI-FG3fQPxB_pe6ybCz894ip5vfj_N77LFw-39_HqRGV7mPJO60lUBMs_TZnWZ14UQwEqii9JYRiWpWcWFFMxQAmTFuF1ZCrUwnHFJjOCn6GrS7cdVC9ZANwTdqH6aTnnt1L-Vzr2qF79VVclyycok8OtTIPjNCHFQrYsmLaU78GNUTBRUUlZImaB8gprgYwxQ79tQonZmqbX6MEvtzFKTWYl1_veEe86XOwlwOQEg3WnrIKhoHHQGrAtgBmW9-2-Dd9DXp1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561912699</pqid></control><display><type>article</type><title>Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Klaeger, Susan ; Apffel, Annie ; Clauser, Karl R. ; Sarkizova, Siranush ; Oliveira, Giacomo ; Rachimi, Suzanna ; Le, Phuong M. ; Tarren, Anna ; Chea, Vipheaviny ; Abelin, Jennifer G. ; Braun, David A. ; Ott, Patrick A. ; Keshishian, Hasmik ; Hacohen, Nir ; Keskin, Derin B. ; Wu, Catherine J. ; Carr, Steven A.</creator><creatorcontrib>Klaeger, Susan ; Apffel, Annie ; Clauser, Karl R. ; Sarkizova, Siranush ; Oliveira, Giacomo ; Rachimi, Suzanna ; Le, Phuong M. ; Tarren, Anna ; Chea, Vipheaviny ; Abelin, Jennifer G. ; Braun, David A. ; Ott, Patrick A. ; Keshishian, Hasmik ; Hacohen, Nir ; Keskin, Derin B. ; Wu, Catherine J. ; Carr, Steven A.</creatorcontrib><description>MS is the most effective method to directly identify peptides presented on human leukocyte antigen (HLA) molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome, and therefore, these methods are not compatible with the often limited amounts of tissue available from clinical tumor samples. Here, we evaluated microscaled basic reversed-phase fractionation to separate HLA peptide samples offline followed by ion mobility coupled to LC–MS/MS for analysis. The combination of these two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone. We demonstrate coverage of HLA immunopeptidomes with up to 8107 distinct peptides starting with as few as 100 million cells. The increased sensitivity obtained using our methods can provide data useful to improve HLA-binding prediction algorithms as well as to enable detection of clinically relevant epitopes such as neoantigens. [Display omitted] •Deep immunopeptidome coverage using liquid and gas phase separation.•Up to 50% more HLA-I peptides using microscaled basic reversed-phase fractionation.•Ion mobility separation (FAIMS) increases HLA-I peptide identifications by up to 58%.•Increased sensitivity provided by these methods enables detection of neoantigens. Here, we evaluated off-line microscaled basic reversed-phase fractionation as well as the use of ion mobility coupled to LC–MS/MS for analysis of peptides presented on HLA-I. The two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone starting with as few as 100 million cells. The increased sensitivity obtained using our methods can enable detection of low abundant but clinically relevant epitopes such as neoantigens.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1016/j.mcpro.2021.100133</identifier><identifier>PMID: 34391888</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antigens, Neoplasm - analysis ; basic reversed-phase fractionation ; Cell Line ; Chemical Fractionation ; Chromatography, Liquid ; FAIMS ; Histocompatibility Antigens Class I - analysis ; HLA ; Humans ; immunopeptidomics ; ion mobility ; Ion Mobility Spectrometry ; Neoplasms - chemistry ; Peptides - analysis ; Tandem Mass Spectrometry ; Technological Innovation and Resources</subject><ispartof>Molecular &amp; cellular proteomics, 2021, Vol.20, p.100133-100133, Article 100133</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3743-9a8a86e944001f74f655e270a67cd2190f2835952c10e0b23dbd1ef5c32390c53</citedby><cites>FETCH-LOGICAL-c3743-9a8a86e944001f74f655e270a67cd2190f2835952c10e0b23dbd1ef5c32390c53</cites><orcidid>0000-0003-4543-5553 ; 0000-0002-0074-5163 ; 0000-0002-2209-3944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34391888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klaeger, Susan</creatorcontrib><creatorcontrib>Apffel, Annie</creatorcontrib><creatorcontrib>Clauser, Karl R.</creatorcontrib><creatorcontrib>Sarkizova, Siranush</creatorcontrib><creatorcontrib>Oliveira, Giacomo</creatorcontrib><creatorcontrib>Rachimi, Suzanna</creatorcontrib><creatorcontrib>Le, Phuong M.</creatorcontrib><creatorcontrib>Tarren, Anna</creatorcontrib><creatorcontrib>Chea, Vipheaviny</creatorcontrib><creatorcontrib>Abelin, Jennifer G.</creatorcontrib><creatorcontrib>Braun, David A.</creatorcontrib><creatorcontrib>Ott, Patrick A.</creatorcontrib><creatorcontrib>Keshishian, Hasmik</creatorcontrib><creatorcontrib>Hacohen, Nir</creatorcontrib><creatorcontrib>Keskin, Derin B.</creatorcontrib><creatorcontrib>Wu, Catherine J.</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><title>Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>MS is the most effective method to directly identify peptides presented on human leukocyte antigen (HLA) molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome, and therefore, these methods are not compatible with the often limited amounts of tissue available from clinical tumor samples. Here, we evaluated microscaled basic reversed-phase fractionation to separate HLA peptide samples offline followed by ion mobility coupled to LC–MS/MS for analysis. The combination of these two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone. We demonstrate coverage of HLA immunopeptidomes with up to 8107 distinct peptides starting with as few as 100 million cells. The increased sensitivity obtained using our methods can provide data useful to improve HLA-binding prediction algorithms as well as to enable detection of clinically relevant epitopes such as neoantigens. [Display omitted] •Deep immunopeptidome coverage using liquid and gas phase separation.•Up to 50% more HLA-I peptides using microscaled basic reversed-phase fractionation.•Ion mobility separation (FAIMS) increases HLA-I peptide identifications by up to 58%.•Increased sensitivity provided by these methods enables detection of neoantigens. Here, we evaluated off-line microscaled basic reversed-phase fractionation as well as the use of ion mobility coupled to LC–MS/MS for analysis of peptides presented on HLA-I. The two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone starting with as few as 100 million cells. The increased sensitivity obtained using our methods can enable detection of low abundant but clinically relevant epitopes such as neoantigens.</description><subject>Antigens, Neoplasm - analysis</subject><subject>basic reversed-phase fractionation</subject><subject>Cell Line</subject><subject>Chemical Fractionation</subject><subject>Chromatography, Liquid</subject><subject>FAIMS</subject><subject>Histocompatibility Antigens Class I - analysis</subject><subject>HLA</subject><subject>Humans</subject><subject>immunopeptidomics</subject><subject>ion mobility</subject><subject>Ion Mobility Spectrometry</subject><subject>Neoplasms - chemistry</subject><subject>Peptides - analysis</subject><subject>Tandem Mass Spectrometry</subject><subject>Technological Innovation and Resources</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctq3DAUFaElr_YLAkHLbjzRw7KtRQJhaB4wkIEka6GRrhMNtuWR7IH066OJk6HddKMr7j3n3MdB6IySGSW0uFjPWtMHP2OE0ZQhlPMDdEwFF5nMq_zb_l8WR-gkxjUhjNBSHKIjnnNJq6o6RpuHfnCt-wMWL9xmdBbrzuJbHfHyVUfAN0GbwflO7x5835kAKR3x3eI6W0LiWt8CnvstBP0CuPYBL4NrdXjDc2iaD7UnF-MI-FG3fQPxB_pe6ybCz894ip5vfj_N77LFw-39_HqRGV7mPJO60lUBMs_TZnWZ14UQwEqii9JYRiWpWcWFFMxQAmTFuF1ZCrUwnHFJjOCn6GrS7cdVC9ZANwTdqH6aTnnt1L-Vzr2qF79VVclyycok8OtTIPjNCHFQrYsmLaU78GNUTBRUUlZImaB8gprgYwxQ79tQonZmqbX6MEvtzFKTWYl1_veEe86XOwlwOQEg3WnrIKhoHHQGrAtgBmW9-2-Dd9DXp1U</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Klaeger, Susan</creator><creator>Apffel, Annie</creator><creator>Clauser, Karl R.</creator><creator>Sarkizova, Siranush</creator><creator>Oliveira, Giacomo</creator><creator>Rachimi, Suzanna</creator><creator>Le, Phuong M.</creator><creator>Tarren, Anna</creator><creator>Chea, Vipheaviny</creator><creator>Abelin, Jennifer G.</creator><creator>Braun, David A.</creator><creator>Ott, Patrick A.</creator><creator>Keshishian, Hasmik</creator><creator>Hacohen, Nir</creator><creator>Keskin, Derin B.</creator><creator>Wu, Catherine J.</creator><creator>Carr, Steven A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4543-5553</orcidid><orcidid>https://orcid.org/0000-0002-0074-5163</orcidid><orcidid>https://orcid.org/0000-0002-2209-3944</orcidid></search><sort><creationdate>2021</creationdate><title>Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples</title><author>Klaeger, Susan ; Apffel, Annie ; Clauser, Karl R. ; Sarkizova, Siranush ; Oliveira, Giacomo ; Rachimi, Suzanna ; Le, Phuong M. ; Tarren, Anna ; Chea, Vipheaviny ; Abelin, Jennifer G. ; Braun, David A. ; Ott, Patrick A. ; Keshishian, Hasmik ; Hacohen, Nir ; Keskin, Derin B. ; Wu, Catherine J. ; Carr, Steven A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3743-9a8a86e944001f74f655e270a67cd2190f2835952c10e0b23dbd1ef5c32390c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antigens, Neoplasm - analysis</topic><topic>basic reversed-phase fractionation</topic><topic>Cell Line</topic><topic>Chemical Fractionation</topic><topic>Chromatography, Liquid</topic><topic>FAIMS</topic><topic>Histocompatibility Antigens Class I - analysis</topic><topic>HLA</topic><topic>Humans</topic><topic>immunopeptidomics</topic><topic>ion mobility</topic><topic>Ion Mobility Spectrometry</topic><topic>Neoplasms - chemistry</topic><topic>Peptides - analysis</topic><topic>Tandem Mass Spectrometry</topic><topic>Technological Innovation and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klaeger, Susan</creatorcontrib><creatorcontrib>Apffel, Annie</creatorcontrib><creatorcontrib>Clauser, Karl R.</creatorcontrib><creatorcontrib>Sarkizova, Siranush</creatorcontrib><creatorcontrib>Oliveira, Giacomo</creatorcontrib><creatorcontrib>Rachimi, Suzanna</creatorcontrib><creatorcontrib>Le, Phuong M.</creatorcontrib><creatorcontrib>Tarren, Anna</creatorcontrib><creatorcontrib>Chea, Vipheaviny</creatorcontrib><creatorcontrib>Abelin, Jennifer G.</creatorcontrib><creatorcontrib>Braun, David A.</creatorcontrib><creatorcontrib>Ott, Patrick A.</creatorcontrib><creatorcontrib>Keshishian, Hasmik</creatorcontrib><creatorcontrib>Hacohen, Nir</creatorcontrib><creatorcontrib>Keskin, Derin B.</creatorcontrib><creatorcontrib>Wu, Catherine J.</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klaeger, Susan</au><au>Apffel, Annie</au><au>Clauser, Karl R.</au><au>Sarkizova, Siranush</au><au>Oliveira, Giacomo</au><au>Rachimi, Suzanna</au><au>Le, Phuong M.</au><au>Tarren, Anna</au><au>Chea, Vipheaviny</au><au>Abelin, Jennifer G.</au><au>Braun, David A.</au><au>Ott, Patrick A.</au><au>Keshishian, Hasmik</au><au>Hacohen, Nir</au><au>Keskin, Derin B.</au><au>Wu, Catherine J.</au><au>Carr, Steven A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2021</date><risdate>2021</risdate><volume>20</volume><spage>100133</spage><epage>100133</epage><pages>100133-100133</pages><artnum>100133</artnum><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>MS is the most effective method to directly identify peptides presented on human leukocyte antigen (HLA) molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome, and therefore, these methods are not compatible with the often limited amounts of tissue available from clinical tumor samples. Here, we evaluated microscaled basic reversed-phase fractionation to separate HLA peptide samples offline followed by ion mobility coupled to LC–MS/MS for analysis. The combination of these two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone. We demonstrate coverage of HLA immunopeptidomes with up to 8107 distinct peptides starting with as few as 100 million cells. The increased sensitivity obtained using our methods can provide data useful to improve HLA-binding prediction algorithms as well as to enable detection of clinically relevant epitopes such as neoantigens. [Display omitted] •Deep immunopeptidome coverage using liquid and gas phase separation.•Up to 50% more HLA-I peptides using microscaled basic reversed-phase fractionation.•Ion mobility separation (FAIMS) increases HLA-I peptide identifications by up to 58%.•Increased sensitivity provided by these methods enables detection of neoantigens. Here, we evaluated off-line microscaled basic reversed-phase fractionation as well as the use of ion mobility coupled to LC–MS/MS for analysis of peptides presented on HLA-I. The two separation methods enabled identification of 20% to 50% more peptides compared with samples analyzed without either prior fractionation or use of ion mobility alone starting with as few as 100 million cells. The increased sensitivity obtained using our methods can enable detection of low abundant but clinically relevant epitopes such as neoantigens.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34391888</pmid><doi>10.1016/j.mcpro.2021.100133</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4543-5553</orcidid><orcidid>https://orcid.org/0000-0002-0074-5163</orcidid><orcidid>https://orcid.org/0000-0002-2209-3944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2021, Vol.20, p.100133-100133, Article 100133
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724927
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antigens, Neoplasm - analysis
basic reversed-phase fractionation
Cell Line
Chemical Fractionation
Chromatography, Liquid
FAIMS
Histocompatibility Antigens Class I - analysis
HLA
Humans
immunopeptidomics
ion mobility
Ion Mobility Spectrometry
Neoplasms - chemistry
Peptides - analysis
Tandem Mass Spectrometry
Technological Innovation and Resources
title Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Liquid%20and%20Gas%20Phase%20Fractionation%20Increases%20HLA-Peptidome%20Coverage%20for%20Primary%20Cell%20and%20Tissue%20Samples&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Klaeger,%20Susan&rft.date=2021&rft.volume=20&rft.spage=100133&rft.epage=100133&rft.pages=100133-100133&rft.artnum=100133&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1016/j.mcpro.2021.100133&rft_dat=%3Cproquest_pubme%3E2561912699%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561912699&rft_id=info:pmid/34391888&rft_els_id=S1535947621001055&rfr_iscdi=true