Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis
Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of G...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2022-01, Vol.79 (1), p.19-19, Article 19 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 79 |
creator | De Schutter, Elke Ramon, Jana Pfeuty, Benjamin De Tender, Caroline Stremersch, Stephan Raemdonck, Koen de Beeck, Ken Op Declercq, Wim Riquet, Franck B. Braeckmans, Kevin Vandenabeele, Peter |
description | Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines. |
doi_str_mv | 10.1007/s00018-021-04078-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8720079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615918978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</originalsourceid><addsrcrecordid>eNp9kcFu1TAQRS0EoqXwAyxQJDawSJlx4tjZIFWltJUeKlKLxM5ybKdNldipnTypf4_TPAp0wcqW58yd8b2EvEU4RAD-KQIAihwo5lACT7dnZB9LCnkNHJ_v7pWgP_fIqxhvE80ErV6SvaKsOZZFtU8uvvcqDiob7NAE5Ww22tD6oKbOu6y5z04vv3w7ycwcOnedqdGPk49dzE3ottZl0WrvjAr3mbM6LJXX5EWr-mjf7M4D8uPrydXxWb65OD0_PtrkmoGYcmagNE0JLWUlA9OIggpkDbbIW1sooyhQrVvDalbpRidcF3XVci24RQpFcUA-r7rj3AzWaOumoHo5hm5I60ivOvlvxXU38tpvpeA0eVcngY-rwM2TtrOjjVzekqVIBeAWE_thNyz4u9nGSQ5d1Lbvk2F-jpJWyGoUNRcJff8EvfVzcMmKB4pRUSMkiq7UYloMtn3cAEEu2co1W5mylQ_ZyqXp3d9ffmz5HWYCihWI4xKXDX9m_0f2F3cmrxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615528910</pqid></control><display><type>article</type><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>PubMed Central</source><creator>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</creator><creatorcontrib>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</creatorcontrib><description>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-021-04078-0</identifier><identifier>PMID: 34971436</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Caspase-3 ; Cell Biology ; Cell death ; Cell Line ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Cell Nucleus - metabolism ; Cellular Biology ; Dextrans ; Dextrans - metabolism ; Efflux ; Kinetics ; Life Sciences ; Lysis ; Membranes ; Mice ; Molecular Weight ; Nanoparticles - chemistry ; Necrosis ; Necrosis - metabolism ; Original ; Original Article ; Phosphatidylserine ; Pore formation ; Receptors, Estrogen - metabolism ; Subcellular Processes</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-01, Vol.79 (1), p.19-19, Article 19</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</citedby><cites>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</cites><orcidid>0000-0002-8218-2017 ; 0000-0001-5527-6838 ; 0000-0002-0247-4176 ; 0000-0002-6528-8266 ; 0000-0002-6669-8822 ; 0000-0002-7993-6295 ; 0000-0003-1500-9537 ; 0000-0003-4804-1381 ; 0000-0001-8417-4283 ; 0000-0002-9202-3941 ; 0000-0002-9807-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34971436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04012801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Schutter, Elke</creatorcontrib><creatorcontrib>Ramon, Jana</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>De Tender, Caroline</creatorcontrib><creatorcontrib>Stremersch, Stephan</creatorcontrib><creatorcontrib>Raemdonck, Koen</creatorcontrib><creatorcontrib>de Beeck, Ken Op</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Riquet, Franck B.</creatorcontrib><creatorcontrib>Braeckmans, Kevin</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular Biology</subject><subject>Dextrans</subject><subject>Dextrans - metabolism</subject><subject>Efflux</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lysis</subject><subject>Membranes</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Nanoparticles - chemistry</subject><subject>Necrosis</subject><subject>Necrosis - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Phosphatidylserine</subject><subject>Pore formation</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Subcellular Processes</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFu1TAQRS0EoqXwAyxQJDawSJlx4tjZIFWltJUeKlKLxM5ybKdNldipnTypf4_TPAp0wcqW58yd8b2EvEU4RAD-KQIAihwo5lACT7dnZB9LCnkNHJ_v7pWgP_fIqxhvE80ErV6SvaKsOZZFtU8uvvcqDiob7NAE5Ww22tD6oKbOu6y5z04vv3w7ycwcOnedqdGPk49dzE3ottZl0WrvjAr3mbM6LJXX5EWr-mjf7M4D8uPrydXxWb65OD0_PtrkmoGYcmagNE0JLWUlA9OIggpkDbbIW1sooyhQrVvDalbpRidcF3XVci24RQpFcUA-r7rj3AzWaOumoHo5hm5I60ivOvlvxXU38tpvpeA0eVcngY-rwM2TtrOjjVzekqVIBeAWE_thNyz4u9nGSQ5d1Lbvk2F-jpJWyGoUNRcJff8EvfVzcMmKB4pRUSMkiq7UYloMtn3cAEEu2co1W5mylQ_ZyqXp3d9ffmz5HWYCihWI4xKXDX9m_0f2F3cmrxE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>De Schutter, Elke</creator><creator>Ramon, Jana</creator><creator>Pfeuty, Benjamin</creator><creator>De Tender, Caroline</creator><creator>Stremersch, Stephan</creator><creator>Raemdonck, Koen</creator><creator>de Beeck, Ken Op</creator><creator>Declercq, Wim</creator><creator>Riquet, Franck B.</creator><creator>Braeckmans, Kevin</creator><creator>Vandenabeele, Peter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8218-2017</orcidid><orcidid>https://orcid.org/0000-0001-5527-6838</orcidid><orcidid>https://orcid.org/0000-0002-0247-4176</orcidid><orcidid>https://orcid.org/0000-0002-6528-8266</orcidid><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0002-7993-6295</orcidid><orcidid>https://orcid.org/0000-0003-1500-9537</orcidid><orcidid>https://orcid.org/0000-0003-4804-1381</orcidid><orcidid>https://orcid.org/0000-0001-8417-4283</orcidid><orcidid>https://orcid.org/0000-0002-9202-3941</orcidid><orcidid>https://orcid.org/0000-0002-9807-4715</orcidid></search><sort><creationdate>20220101</creationdate><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><author>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular Biology</topic><topic>Dextrans</topic><topic>Dextrans - metabolism</topic><topic>Efflux</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lysis</topic><topic>Membranes</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Nanoparticles - chemistry</topic><topic>Necrosis</topic><topic>Necrosis - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Phosphatidylserine</topic><topic>Pore formation</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Schutter, Elke</creatorcontrib><creatorcontrib>Ramon, Jana</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>De Tender, Caroline</creatorcontrib><creatorcontrib>Stremersch, Stephan</creatorcontrib><creatorcontrib>Raemdonck, Koen</creatorcontrib><creatorcontrib>de Beeck, Ken Op</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Riquet, Franck B.</creatorcontrib><creatorcontrib>Braeckmans, Kevin</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Schutter, Elke</au><au>Ramon, Jana</au><au>Pfeuty, Benjamin</au><au>De Tender, Caroline</au><au>Stremersch, Stephan</au><au>Raemdonck, Koen</au><au>de Beeck, Ken Op</au><au>Declercq, Wim</au><au>Riquet, Franck B.</au><au>Braeckmans, Kevin</au><au>Vandenabeele, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>79</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34971436</pmid><doi>10.1007/s00018-021-04078-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8218-2017</orcidid><orcidid>https://orcid.org/0000-0001-5527-6838</orcidid><orcidid>https://orcid.org/0000-0002-0247-4176</orcidid><orcidid>https://orcid.org/0000-0002-6528-8266</orcidid><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0002-7993-6295</orcidid><orcidid>https://orcid.org/0000-0003-1500-9537</orcidid><orcidid>https://orcid.org/0000-0003-4804-1381</orcidid><orcidid>https://orcid.org/0000-0001-8417-4283</orcidid><orcidid>https://orcid.org/0000-0002-9202-3941</orcidid><orcidid>https://orcid.org/0000-0002-9807-4715</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2022-01, Vol.79 (1), p.19-19, Article 19 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8720079 |
source | MEDLINE; SpringerLink Journals; PubMed Central |
subjects | Animals Apoptosis Biochemistry Biomedical and Life Sciences Biomedicine Caspase-3 Cell Biology Cell death Cell Line Cell Membrane - metabolism Cell Membrane Permeability Cell Nucleus - metabolism Cellular Biology Dextrans Dextrans - metabolism Efflux Kinetics Life Sciences Lysis Membranes Mice Molecular Weight Nanoparticles - chemistry Necrosis Necrosis - metabolism Original Original Article Phosphatidylserine Pore formation Receptors, Estrogen - metabolism Subcellular Processes |
title | Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20membrane%20perforation%20by%20GSDME%20during%20apoptosis-driven%20secondary%20necrosis&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=De%20Schutter,%20Elke&rft.date=2022-01-01&rft.volume=79&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-021-04078-0&rft_dat=%3Cproquest_pubme%3E2615918978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615528910&rft_id=info:pmid/34971436&rfr_iscdi=true |