Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis

Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2022-01, Vol.79 (1), p.19-19, Article 19
Hauptverfasser: De Schutter, Elke, Ramon, Jana, Pfeuty, Benjamin, De Tender, Caroline, Stremersch, Stephan, Raemdonck, Koen, de Beeck, Ken Op, Declercq, Wim, Riquet, Franck B., Braeckmans, Kevin, Vandenabeele, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 19
container_title Cellular and molecular life sciences : CMLS
container_volume 79
creator De Schutter, Elke
Ramon, Jana
Pfeuty, Benjamin
De Tender, Caroline
Stremersch, Stephan
Raemdonck, Koen
de Beeck, Ken Op
Declercq, Wim
Riquet, Franck B.
Braeckmans, Kevin
Vandenabeele, Peter
description Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.
doi_str_mv 10.1007/s00018-021-04078-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8720079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615918978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</originalsourceid><addsrcrecordid>eNp9kcFu1TAQRS0EoqXwAyxQJDawSJlx4tjZIFWltJUeKlKLxM5ybKdNldipnTypf4_TPAp0wcqW58yd8b2EvEU4RAD-KQIAihwo5lACT7dnZB9LCnkNHJ_v7pWgP_fIqxhvE80ErV6SvaKsOZZFtU8uvvcqDiob7NAE5Ww22tD6oKbOu6y5z04vv3w7ycwcOnedqdGPk49dzE3ottZl0WrvjAr3mbM6LJXX5EWr-mjf7M4D8uPrydXxWb65OD0_PtrkmoGYcmagNE0JLWUlA9OIggpkDbbIW1sooyhQrVvDalbpRidcF3XVci24RQpFcUA-r7rj3AzWaOumoHo5hm5I60ivOvlvxXU38tpvpeA0eVcngY-rwM2TtrOjjVzekqVIBeAWE_thNyz4u9nGSQ5d1Lbvk2F-jpJWyGoUNRcJff8EvfVzcMmKB4pRUSMkiq7UYloMtn3cAEEu2co1W5mylQ_ZyqXp3d9ffmz5HWYCihWI4xKXDX9m_0f2F3cmrxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615528910</pqid></control><display><type>article</type><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>PubMed Central</source><creator>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</creator><creatorcontrib>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</creatorcontrib><description>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-021-04078-0</identifier><identifier>PMID: 34971436</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Caspase-3 ; Cell Biology ; Cell death ; Cell Line ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Cell Nucleus - metabolism ; Cellular Biology ; Dextrans ; Dextrans - metabolism ; Efflux ; Kinetics ; Life Sciences ; Lysis ; Membranes ; Mice ; Molecular Weight ; Nanoparticles - chemistry ; Necrosis ; Necrosis - metabolism ; Original ; Original Article ; Phosphatidylserine ; Pore formation ; Receptors, Estrogen - metabolism ; Subcellular Processes</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-01, Vol.79 (1), p.19-19, Article 19</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</citedby><cites>FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</cites><orcidid>0000-0002-8218-2017 ; 0000-0001-5527-6838 ; 0000-0002-0247-4176 ; 0000-0002-6528-8266 ; 0000-0002-6669-8822 ; 0000-0002-7993-6295 ; 0000-0003-1500-9537 ; 0000-0003-4804-1381 ; 0000-0001-8417-4283 ; 0000-0002-9202-3941 ; 0000-0002-9807-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34971436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04012801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Schutter, Elke</creatorcontrib><creatorcontrib>Ramon, Jana</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>De Tender, Caroline</creatorcontrib><creatorcontrib>Stremersch, Stephan</creatorcontrib><creatorcontrib>Raemdonck, Koen</creatorcontrib><creatorcontrib>de Beeck, Ken Op</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Riquet, Franck B.</creatorcontrib><creatorcontrib>Braeckmans, Kevin</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cell Nucleus - metabolism</subject><subject>Cellular Biology</subject><subject>Dextrans</subject><subject>Dextrans - metabolism</subject><subject>Efflux</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lysis</subject><subject>Membranes</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Nanoparticles - chemistry</subject><subject>Necrosis</subject><subject>Necrosis - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Phosphatidylserine</subject><subject>Pore formation</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Subcellular Processes</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFu1TAQRS0EoqXwAyxQJDawSJlx4tjZIFWltJUeKlKLxM5ybKdNldipnTypf4_TPAp0wcqW58yd8b2EvEU4RAD-KQIAihwo5lACT7dnZB9LCnkNHJ_v7pWgP_fIqxhvE80ErV6SvaKsOZZFtU8uvvcqDiob7NAE5Ww22tD6oKbOu6y5z04vv3w7ycwcOnedqdGPk49dzE3ottZl0WrvjAr3mbM6LJXX5EWr-mjf7M4D8uPrydXxWb65OD0_PtrkmoGYcmagNE0JLWUlA9OIggpkDbbIW1sooyhQrVvDalbpRidcF3XVci24RQpFcUA-r7rj3AzWaOumoHo5hm5I60ivOvlvxXU38tpvpeA0eVcngY-rwM2TtrOjjVzekqVIBeAWE_thNyz4u9nGSQ5d1Lbvk2F-jpJWyGoUNRcJff8EvfVzcMmKB4pRUSMkiq7UYloMtn3cAEEu2co1W5mylQ_ZyqXp3d9ffmz5HWYCihWI4xKXDX9m_0f2F3cmrxE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>De Schutter, Elke</creator><creator>Ramon, Jana</creator><creator>Pfeuty, Benjamin</creator><creator>De Tender, Caroline</creator><creator>Stremersch, Stephan</creator><creator>Raemdonck, Koen</creator><creator>de Beeck, Ken Op</creator><creator>Declercq, Wim</creator><creator>Riquet, Franck B.</creator><creator>Braeckmans, Kevin</creator><creator>Vandenabeele, Peter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8218-2017</orcidid><orcidid>https://orcid.org/0000-0001-5527-6838</orcidid><orcidid>https://orcid.org/0000-0002-0247-4176</orcidid><orcidid>https://orcid.org/0000-0002-6528-8266</orcidid><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0002-7993-6295</orcidid><orcidid>https://orcid.org/0000-0003-1500-9537</orcidid><orcidid>https://orcid.org/0000-0003-4804-1381</orcidid><orcidid>https://orcid.org/0000-0001-8417-4283</orcidid><orcidid>https://orcid.org/0000-0002-9202-3941</orcidid><orcidid>https://orcid.org/0000-0002-9807-4715</orcidid></search><sort><creationdate>20220101</creationdate><title>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</title><author>De Schutter, Elke ; Ramon, Jana ; Pfeuty, Benjamin ; De Tender, Caroline ; Stremersch, Stephan ; Raemdonck, Koen ; de Beeck, Ken Op ; Declercq, Wim ; Riquet, Franck B. ; Braeckmans, Kevin ; Vandenabeele, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-5d04db40f25450db832815b1f17fe3ada202ccfd5956cbc5d0c396f7c87e12033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cell Nucleus - metabolism</topic><topic>Cellular Biology</topic><topic>Dextrans</topic><topic>Dextrans - metabolism</topic><topic>Efflux</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lysis</topic><topic>Membranes</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Nanoparticles - chemistry</topic><topic>Necrosis</topic><topic>Necrosis - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Phosphatidylserine</topic><topic>Pore formation</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Schutter, Elke</creatorcontrib><creatorcontrib>Ramon, Jana</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>De Tender, Caroline</creatorcontrib><creatorcontrib>Stremersch, Stephan</creatorcontrib><creatorcontrib>Raemdonck, Koen</creatorcontrib><creatorcontrib>de Beeck, Ken Op</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Riquet, Franck B.</creatorcontrib><creatorcontrib>Braeckmans, Kevin</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Schutter, Elke</au><au>Ramon, Jana</au><au>Pfeuty, Benjamin</au><au>De Tender, Caroline</au><au>Stremersch, Stephan</au><au>Raemdonck, Koen</au><au>de Beeck, Ken Op</au><au>Declercq, Wim</au><au>Riquet, Franck B.</au><au>Braeckmans, Kevin</au><au>Vandenabeele, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>79</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34971436</pmid><doi>10.1007/s00018-021-04078-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8218-2017</orcidid><orcidid>https://orcid.org/0000-0001-5527-6838</orcidid><orcidid>https://orcid.org/0000-0002-0247-4176</orcidid><orcidid>https://orcid.org/0000-0002-6528-8266</orcidid><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0002-7993-6295</orcidid><orcidid>https://orcid.org/0000-0003-1500-9537</orcidid><orcidid>https://orcid.org/0000-0003-4804-1381</orcidid><orcidid>https://orcid.org/0000-0001-8417-4283</orcidid><orcidid>https://orcid.org/0000-0002-9202-3941</orcidid><orcidid>https://orcid.org/0000-0002-9807-4715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2022-01, Vol.79 (1), p.19-19, Article 19
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8720079
source MEDLINE; SpringerLink Journals; PubMed Central
subjects Animals
Apoptosis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Caspase-3
Cell Biology
Cell death
Cell Line
Cell Membrane - metabolism
Cell Membrane Permeability
Cell Nucleus - metabolism
Cellular Biology
Dextrans
Dextrans - metabolism
Efflux
Kinetics
Life Sciences
Lysis
Membranes
Mice
Molecular Weight
Nanoparticles - chemistry
Necrosis
Necrosis - metabolism
Original
Original Article
Phosphatidylserine
Pore formation
Receptors, Estrogen - metabolism
Subcellular Processes
title Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20membrane%20perforation%20by%20GSDME%20during%20apoptosis-driven%20secondary%20necrosis&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=De%20Schutter,%20Elke&rft.date=2022-01-01&rft.volume=79&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-021-04078-0&rft_dat=%3Cproquest_pubme%3E2615918978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615528910&rft_id=info:pmid/34971436&rfr_iscdi=true