Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning
We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching h...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2022-03, Vol.142, p.105192-105192, Article 105192 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105192 |
---|---|
container_issue | |
container_start_page | 105192 |
container_title | Computers in biology and medicine |
container_volume | 142 |
creator | Boussen, Salah Cordier, Pierre-Yves Malet, Arthur Simeone, Pierre Cataldi, Sophie Vaisse, Camille Roche, Xavier Castelli, Alexandre Assal, Mehdi Pepin, Guillaume Cot, Kevin Denis, Jean-Baptiste Morales, Timothée Velly, Lionel Bruder, Nicolas |
description | We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals.
We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay.
Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87).
Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement.
[Display omitted]
•Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients. |
doi_str_mv | 10.1016/j.compbiomed.2021.105192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521009860</els_id><sourcerecordid>2627122488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</originalsourceid><addsrcrecordid>eNqFUcFu1DAUjBCIbgu_gCxxgUMW23Ec-4LULoVWWqmXwtU4zsuuV4kd7CQSf4-jlAK9IFmy5DdvZjyTZYjgLcGEfzhtje-H2voemi3FlKTnkkj6LNsQUckclwV7nm0wJjhngpZn2XmMJ4wxwwV-mZ0VTEpBKd5k3--D1QdA2jWo986OPlh3QL5Fu7tvt59yItGgRwtujMi6dEZw0c6AjA6ApriAJxenAcJsIyQSbY7WAepAB5emr7IXre4ivH64L7Kvn6_vdzf5_u7L7e5yn5uSkTHnmrREQ5s8ikbUwnCBWSlrLAUreMEIkxQ3TPCCSMm4EG1dcFIQjhnVDEhxkX1ceYepTqmY5DjoTg3B9jr8VF5b9e_E2aM6-FmJisikmgjerwTHJ2s3l3u1vKXweFXQal7E3j2IBf9jgjiq3kYDXacd-CkqyomgyWlZJejbJ9CTn4JLUSQUrQilTIiEEivKBB9jgPbRAcFqqVyd1J_K1VK5WitPq2_-_vjj4u-OE-BqBUCKf7YQVDSpUAONDWBG1Xj7f5VfvuW_6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627122488</pqid></control><display><type>article</type><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas</creator><creatorcontrib>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas ; on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire) ; GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><description>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals.
We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay.
Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87).
Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement.
[Display omitted]
•Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.105192</identifier><identifier>PMID: 34998220</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Bioengineering ; Clustering ; Computer Science ; Coronaviruses ; COVID-19 ; Critical Care ; Decision making ; Epidemics ; Feature selection ; Humans ; Intensive care ; Intubation ; Learning algorithms ; Length of stay ; Life Sciences ; Machine learning ; Monitoring ; Oxygen content ; Oxygen therapy ; Pandemics ; Patients ; Physiology ; Prediction ; Probabilistic models ; Retrospective Studies ; SARS-CoV-2 ; Triage ; Unsupervised learning ; Unsupervised Machine Learning ; Ventilators</subject><ispartof>Computers in biology and medicine, 2022-03, Vol.142, p.105192-105192, Article 105192</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><rights>2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</citedby><cites>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</cites><orcidid>0000-0002-0682-9405 ; 0000-0002-9259-1498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2627122488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34998220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-04067327$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boussen, Salah</creatorcontrib><creatorcontrib>Cordier, Pierre-Yves</creatorcontrib><creatorcontrib>Malet, Arthur</creatorcontrib><creatorcontrib>Simeone, Pierre</creatorcontrib><creatorcontrib>Cataldi, Sophie</creatorcontrib><creatorcontrib>Vaisse, Camille</creatorcontrib><creatorcontrib>Roche, Xavier</creatorcontrib><creatorcontrib>Castelli, Alexandre</creatorcontrib><creatorcontrib>Assal, Mehdi</creatorcontrib><creatorcontrib>Pepin, Guillaume</creatorcontrib><creatorcontrib>Cot, Kevin</creatorcontrib><creatorcontrib>Denis, Jean-Baptiste</creatorcontrib><creatorcontrib>Morales, Timothée</creatorcontrib><creatorcontrib>Velly, Lionel</creatorcontrib><creatorcontrib>Bruder, Nicolas</creatorcontrib><creatorcontrib>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><creatorcontrib>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals.
We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay.
Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87).
Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement.
[Display omitted]
•Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bioengineering</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Critical Care</subject><subject>Decision making</subject><subject>Epidemics</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intubation</subject><subject>Learning algorithms</subject><subject>Length of stay</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Oxygen content</subject><subject>Oxygen therapy</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Physiology</subject><subject>Prediction</subject><subject>Probabilistic models</subject><subject>Retrospective Studies</subject><subject>SARS-CoV-2</subject><subject>Triage</subject><subject>Unsupervised learning</subject><subject>Unsupervised Machine Learning</subject><subject>Ventilators</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUcFu1DAUjBCIbgu_gCxxgUMW23Ec-4LULoVWWqmXwtU4zsuuV4kd7CQSf4-jlAK9IFmy5DdvZjyTZYjgLcGEfzhtje-H2voemi3FlKTnkkj6LNsQUckclwV7nm0wJjhngpZn2XmMJ4wxwwV-mZ0VTEpBKd5k3--D1QdA2jWo986OPlh3QL5Fu7tvt59yItGgRwtujMi6dEZw0c6AjA6ApriAJxenAcJsIyQSbY7WAepAB5emr7IXre4ivH64L7Kvn6_vdzf5_u7L7e5yn5uSkTHnmrREQ5s8ikbUwnCBWSlrLAUreMEIkxQ3TPCCSMm4EG1dcFIQjhnVDEhxkX1ceYepTqmY5DjoTg3B9jr8VF5b9e_E2aM6-FmJisikmgjerwTHJ2s3l3u1vKXweFXQal7E3j2IBf9jgjiq3kYDXacd-CkqyomgyWlZJejbJ9CTn4JLUSQUrQilTIiEEivKBB9jgPbRAcFqqVyd1J_K1VK5WitPq2_-_vjj4u-OE-BqBUCKf7YQVDSpUAONDWBG1Xj7f5VfvuW_6Q</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Boussen, Salah</creator><creator>Cordier, Pierre-Yves</creator><creator>Malet, Arthur</creator><creator>Simeone, Pierre</creator><creator>Cataldi, Sophie</creator><creator>Vaisse, Camille</creator><creator>Roche, Xavier</creator><creator>Castelli, Alexandre</creator><creator>Assal, Mehdi</creator><creator>Pepin, Guillaume</creator><creator>Cot, Kevin</creator><creator>Denis, Jean-Baptiste</creator><creator>Morales, Timothée</creator><creator>Velly, Lionel</creator><creator>Bruder, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0682-9405</orcidid><orcidid>https://orcid.org/0000-0002-9259-1498</orcidid></search><sort><creationdate>20220301</creationdate><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><author>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bioengineering</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Critical Care</topic><topic>Decision making</topic><topic>Epidemics</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intubation</topic><topic>Learning algorithms</topic><topic>Length of stay</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Oxygen content</topic><topic>Oxygen therapy</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Physiology</topic><topic>Prediction</topic><topic>Probabilistic models</topic><topic>Retrospective Studies</topic><topic>SARS-CoV-2</topic><topic>Triage</topic><topic>Unsupervised learning</topic><topic>Unsupervised Machine Learning</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boussen, Salah</creatorcontrib><creatorcontrib>Cordier, Pierre-Yves</creatorcontrib><creatorcontrib>Malet, Arthur</creatorcontrib><creatorcontrib>Simeone, Pierre</creatorcontrib><creatorcontrib>Cataldi, Sophie</creatorcontrib><creatorcontrib>Vaisse, Camille</creatorcontrib><creatorcontrib>Roche, Xavier</creatorcontrib><creatorcontrib>Castelli, Alexandre</creatorcontrib><creatorcontrib>Assal, Mehdi</creatorcontrib><creatorcontrib>Pepin, Guillaume</creatorcontrib><creatorcontrib>Cot, Kevin</creatorcontrib><creatorcontrib>Denis, Jean-Baptiste</creatorcontrib><creatorcontrib>Morales, Timothée</creatorcontrib><creatorcontrib>Velly, Lionel</creatorcontrib><creatorcontrib>Bruder, Nicolas</creatorcontrib><creatorcontrib>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><creatorcontrib>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boussen, Salah</au><au>Cordier, Pierre-Yves</au><au>Malet, Arthur</au><au>Simeone, Pierre</au><au>Cataldi, Sophie</au><au>Vaisse, Camille</au><au>Roche, Xavier</au><au>Castelli, Alexandre</au><au>Assal, Mehdi</au><au>Pepin, Guillaume</au><au>Cot, Kevin</au><au>Denis, Jean-Baptiste</au><au>Morales, Timothée</au><au>Velly, Lionel</au><au>Bruder, Nicolas</au><aucorp>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</aucorp><aucorp>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>142</volume><spage>105192</spage><epage>105192</epage><pages>105192-105192</pages><artnum>105192</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals.
We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay.
Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87).
Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement.
[Display omitted]
•Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34998220</pmid><doi>10.1016/j.compbiomed.2021.105192</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0682-9405</orcidid><orcidid>https://orcid.org/0000-0002-9259-1498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-03, Vol.142, p.105192-105192, Article 105192 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719000 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Accuracy Algorithms Artificial intelligence Bioengineering Clustering Computer Science Coronaviruses COVID-19 Critical Care Decision making Epidemics Feature selection Humans Intensive care Intubation Learning algorithms Length of stay Life Sciences Machine learning Monitoring Oxygen content Oxygen therapy Pandemics Patients Physiology Prediction Probabilistic models Retrospective Studies SARS-CoV-2 Triage Unsupervised learning Unsupervised Machine Learning Ventilators |
title | Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triage%20and%20monitoring%20of%20COVID-19%20patients%20in%20intensive%20care%20using%20unsupervised%20machine%20learning&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Boussen,%20Salah&rft.aucorp=on%20behalf%20of%20the%20GRAM+(Groupe%20de%20Recherche%20en%20R%C3%A9animation%20et%20Anesth%C3%A9sie%20de%20Marseille%20Pluridisciplinaire)&rft.date=2022-03-01&rft.volume=142&rft.spage=105192&rft.epage=105192&rft.pages=105192-105192&rft.artnum=105192&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.105192&rft_dat=%3Cproquest_pubme%3E2627122488%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627122488&rft_id=info:pmid/34998220&rft_els_id=S0010482521009860&rfr_iscdi=true |