Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning

We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2022-03, Vol.142, p.105192-105192, Article 105192
Hauptverfasser: Boussen, Salah, Cordier, Pierre-Yves, Malet, Arthur, Simeone, Pierre, Cataldi, Sophie, Vaisse, Camille, Roche, Xavier, Castelli, Alexandre, Assal, Mehdi, Pepin, Guillaume, Cot, Kevin, Denis, Jean-Baptiste, Morales, Timothée, Velly, Lionel, Bruder, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105192
container_issue
container_start_page 105192
container_title Computers in biology and medicine
container_volume 142
creator Boussen, Salah
Cordier, Pierre-Yves
Malet, Arthur
Simeone, Pierre
Cataldi, Sophie
Vaisse, Camille
Roche, Xavier
Castelli, Alexandre
Assal, Mehdi
Pepin, Guillaume
Cot, Kevin
Denis, Jean-Baptiste
Morales, Timothée
Velly, Lionel
Bruder, Nicolas
description We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay. Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87). Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement. [Display omitted] •Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.
doi_str_mv 10.1016/j.compbiomed.2021.105192
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521009860</els_id><sourcerecordid>2627122488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</originalsourceid><addsrcrecordid>eNqFUcFu1DAUjBCIbgu_gCxxgUMW23Ec-4LULoVWWqmXwtU4zsuuV4kd7CQSf4-jlAK9IFmy5DdvZjyTZYjgLcGEfzhtje-H2voemi3FlKTnkkj6LNsQUckclwV7nm0wJjhngpZn2XmMJ4wxwwV-mZ0VTEpBKd5k3--D1QdA2jWo986OPlh3QL5Fu7tvt59yItGgRwtujMi6dEZw0c6AjA6ApriAJxenAcJsIyQSbY7WAepAB5emr7IXre4ivH64L7Kvn6_vdzf5_u7L7e5yn5uSkTHnmrREQ5s8ikbUwnCBWSlrLAUreMEIkxQ3TPCCSMm4EG1dcFIQjhnVDEhxkX1ceYepTqmY5DjoTg3B9jr8VF5b9e_E2aM6-FmJisikmgjerwTHJ2s3l3u1vKXweFXQal7E3j2IBf9jgjiq3kYDXacd-CkqyomgyWlZJejbJ9CTn4JLUSQUrQilTIiEEivKBB9jgPbRAcFqqVyd1J_K1VK5WitPq2_-_vjj4u-OE-BqBUCKf7YQVDSpUAONDWBG1Xj7f5VfvuW_6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627122488</pqid></control><display><type>article</type><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas</creator><creatorcontrib>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas ; on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire) ; GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><description>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay. Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87). Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement. [Display omitted] •Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.105192</identifier><identifier>PMID: 34998220</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Bioengineering ; Clustering ; Computer Science ; Coronaviruses ; COVID-19 ; Critical Care ; Decision making ; Epidemics ; Feature selection ; Humans ; Intensive care ; Intubation ; Learning algorithms ; Length of stay ; Life Sciences ; Machine learning ; Monitoring ; Oxygen content ; Oxygen therapy ; Pandemics ; Patients ; Physiology ; Prediction ; Probabilistic models ; Retrospective Studies ; SARS-CoV-2 ; Triage ; Unsupervised learning ; Unsupervised Machine Learning ; Ventilators</subject><ispartof>Computers in biology and medicine, 2022-03, Vol.142, p.105192-105192, Article 105192</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><rights>2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</citedby><cites>FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</cites><orcidid>0000-0002-0682-9405 ; 0000-0002-9259-1498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2627122488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34998220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-04067327$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boussen, Salah</creatorcontrib><creatorcontrib>Cordier, Pierre-Yves</creatorcontrib><creatorcontrib>Malet, Arthur</creatorcontrib><creatorcontrib>Simeone, Pierre</creatorcontrib><creatorcontrib>Cataldi, Sophie</creatorcontrib><creatorcontrib>Vaisse, Camille</creatorcontrib><creatorcontrib>Roche, Xavier</creatorcontrib><creatorcontrib>Castelli, Alexandre</creatorcontrib><creatorcontrib>Assal, Mehdi</creatorcontrib><creatorcontrib>Pepin, Guillaume</creatorcontrib><creatorcontrib>Cot, Kevin</creatorcontrib><creatorcontrib>Denis, Jean-Baptiste</creatorcontrib><creatorcontrib>Morales, Timothée</creatorcontrib><creatorcontrib>Velly, Lionel</creatorcontrib><creatorcontrib>Bruder, Nicolas</creatorcontrib><creatorcontrib>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><creatorcontrib>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay. Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87). Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement. [Display omitted] •Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bioengineering</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Critical Care</subject><subject>Decision making</subject><subject>Epidemics</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intubation</subject><subject>Learning algorithms</subject><subject>Length of stay</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Oxygen content</subject><subject>Oxygen therapy</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Physiology</subject><subject>Prediction</subject><subject>Probabilistic models</subject><subject>Retrospective Studies</subject><subject>SARS-CoV-2</subject><subject>Triage</subject><subject>Unsupervised learning</subject><subject>Unsupervised Machine Learning</subject><subject>Ventilators</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUcFu1DAUjBCIbgu_gCxxgUMW23Ec-4LULoVWWqmXwtU4zsuuV4kd7CQSf4-jlAK9IFmy5DdvZjyTZYjgLcGEfzhtje-H2voemi3FlKTnkkj6LNsQUckclwV7nm0wJjhngpZn2XmMJ4wxwwV-mZ0VTEpBKd5k3--D1QdA2jWo986OPlh3QL5Fu7tvt59yItGgRwtujMi6dEZw0c6AjA6ApriAJxenAcJsIyQSbY7WAepAB5emr7IXre4ivH64L7Kvn6_vdzf5_u7L7e5yn5uSkTHnmrREQ5s8ikbUwnCBWSlrLAUreMEIkxQ3TPCCSMm4EG1dcFIQjhnVDEhxkX1ceYepTqmY5DjoTg3B9jr8VF5b9e_E2aM6-FmJisikmgjerwTHJ2s3l3u1vKXweFXQal7E3j2IBf9jgjiq3kYDXacd-CkqyomgyWlZJejbJ9CTn4JLUSQUrQilTIiEEivKBB9jgPbRAcFqqVyd1J_K1VK5WitPq2_-_vjj4u-OE-BqBUCKf7YQVDSpUAONDWBG1Xj7f5VfvuW_6Q</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Boussen, Salah</creator><creator>Cordier, Pierre-Yves</creator><creator>Malet, Arthur</creator><creator>Simeone, Pierre</creator><creator>Cataldi, Sophie</creator><creator>Vaisse, Camille</creator><creator>Roche, Xavier</creator><creator>Castelli, Alexandre</creator><creator>Assal, Mehdi</creator><creator>Pepin, Guillaume</creator><creator>Cot, Kevin</creator><creator>Denis, Jean-Baptiste</creator><creator>Morales, Timothée</creator><creator>Velly, Lionel</creator><creator>Bruder, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0682-9405</orcidid><orcidid>https://orcid.org/0000-0002-9259-1498</orcidid></search><sort><creationdate>20220301</creationdate><title>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</title><author>Boussen, Salah ; Cordier, Pierre-Yves ; Malet, Arthur ; Simeone, Pierre ; Cataldi, Sophie ; Vaisse, Camille ; Roche, Xavier ; Castelli, Alexandre ; Assal, Mehdi ; Pepin, Guillaume ; Cot, Kevin ; Denis, Jean-Baptiste ; Morales, Timothée ; Velly, Lionel ; Bruder, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-6a1f1aef0008d8b8c680459b0984363414920d48631994688fb361316042a4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bioengineering</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Critical Care</topic><topic>Decision making</topic><topic>Epidemics</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intubation</topic><topic>Learning algorithms</topic><topic>Length of stay</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Oxygen content</topic><topic>Oxygen therapy</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Physiology</topic><topic>Prediction</topic><topic>Probabilistic models</topic><topic>Retrospective Studies</topic><topic>SARS-CoV-2</topic><topic>Triage</topic><topic>Unsupervised learning</topic><topic>Unsupervised Machine Learning</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boussen, Salah</creatorcontrib><creatorcontrib>Cordier, Pierre-Yves</creatorcontrib><creatorcontrib>Malet, Arthur</creatorcontrib><creatorcontrib>Simeone, Pierre</creatorcontrib><creatorcontrib>Cataldi, Sophie</creatorcontrib><creatorcontrib>Vaisse, Camille</creatorcontrib><creatorcontrib>Roche, Xavier</creatorcontrib><creatorcontrib>Castelli, Alexandre</creatorcontrib><creatorcontrib>Assal, Mehdi</creatorcontrib><creatorcontrib>Pepin, Guillaume</creatorcontrib><creatorcontrib>Cot, Kevin</creatorcontrib><creatorcontrib>Denis, Jean-Baptiste</creatorcontrib><creatorcontrib>Morales, Timothée</creatorcontrib><creatorcontrib>Velly, Lionel</creatorcontrib><creatorcontrib>Bruder, Nicolas</creatorcontrib><creatorcontrib>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><creatorcontrib>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boussen, Salah</au><au>Cordier, Pierre-Yves</au><au>Malet, Arthur</au><au>Simeone, Pierre</au><au>Cataldi, Sophie</au><au>Vaisse, Camille</au><au>Roche, Xavier</au><au>Castelli, Alexandre</au><au>Assal, Mehdi</au><au>Pepin, Guillaume</au><au>Cot, Kevin</au><au>Denis, Jean-Baptiste</au><au>Morales, Timothée</au><au>Velly, Lionel</au><au>Bruder, Nicolas</au><aucorp>on behalf of the GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</aucorp><aucorp>GRAM+(Groupe de Recherche en Réanimation et Anesthésie de Marseille Pluridisciplinaire)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>142</volume><spage>105192</spage><epage>105192</epage><pages>105192-105192</pages><artnum>105192</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine-learning algorithm (the Gaussian mixture model) was applied to the patients' data for clustering. The algorithm's robustness was ensured by comparing its results against actual intubation rates. We predicted intubation rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that represented the patient's severity over the previous 24 h; the validity of MS24, the maximum S24 score, was checked against rates of intubation risk and prolonged ICU stay. Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater than 5 days at an accuracy rate of 81.0% (AUC = 0.87). Our algorithm uses simple signals and seems to efficiently visualize the patients' respiratory situations, meaning that it has the potential to assist staffs' in decision-making. Additionally, real-time computation is easy to implement. [Display omitted] •Breathing frequency and Saturation are highly predictive of intubation in COVID-19 Intensive care patients.•Breathing Frequency and Saturation signals are altered at least 48 h before actual intubation for COVID-19 patients.•Automated signal analysis and Artificial Intelligence algorithms enable robust monitoring of COVID-19 patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34998220</pmid><doi>10.1016/j.compbiomed.2021.105192</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0682-9405</orcidid><orcidid>https://orcid.org/0000-0002-9259-1498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-03, Vol.142, p.105192-105192, Article 105192
issn 0010-4825
1879-0534
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719000
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Accuracy
Algorithms
Artificial intelligence
Bioengineering
Clustering
Computer Science
Coronaviruses
COVID-19
Critical Care
Decision making
Epidemics
Feature selection
Humans
Intensive care
Intubation
Learning algorithms
Length of stay
Life Sciences
Machine learning
Monitoring
Oxygen content
Oxygen therapy
Pandemics
Patients
Physiology
Prediction
Probabilistic models
Retrospective Studies
SARS-CoV-2
Triage
Unsupervised learning
Unsupervised Machine Learning
Ventilators
title Triage and monitoring of COVID-19 patients in intensive care using unsupervised machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triage%20and%20monitoring%20of%20COVID-19%20patients%20in%20intensive%20care%20using%20unsupervised%20machine%20learning&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Boussen,%20Salah&rft.aucorp=on%20behalf%20of%20the%20GRAM+(Groupe%20de%20Recherche%20en%20R%C3%A9animation%20et%20Anesth%C3%A9sie%20de%20Marseille%20Pluridisciplinaire)&rft.date=2022-03-01&rft.volume=142&rft.spage=105192&rft.epage=105192&rft.pages=105192-105192&rft.artnum=105192&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.105192&rft_dat=%3Cproquest_pubme%3E2627122488%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627122488&rft_id=info:pmid/34998220&rft_els_id=S0010482521009860&rfr_iscdi=true