Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base

Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-12, Vol.118 (51), p.1-10
Hauptverfasser: Astley, Christina M., Tuli, Gaurav, Cord, Kimberly A. Mc, Cohn, Emily L., Rader, Benjamin, Varrelman, Tanner J., Chiu, Samantha L., Deng, Xiaoyi, Stewart, Kathleen, Farag, Tamer H., Barkume, Kristina M., LaRocca, Sarah, Morris, Katherine A., Kreuter, Frauke, Brownstein, John S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 51
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Astley, Christina M.
Tuli, Gaurav
Cord, Kimberly A. Mc
Cohn, Emily L.
Rader, Benjamin
Varrelman, Tanner J.
Chiu, Samantha L.
Deng, Xiaoyi
Stewart, Kathleen
Farag, Tamer H.
Barkume, Kristina M.
LaRocca, Sarah
Morris, Katherine A.
Kreuter, Frauke
Brownstein, John S.
description Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.
doi_str_mv 10.1073/pnas.2111455118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8713788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27117507</jstor_id><sourcerecordid>27117507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtHZsx_YFCS30Q6rUC3C1nGS86yWxg51U6n-Pl22Xwskav988zdND6C0lZ5RIdj4Fm89qSikXglL1DK0o0bRquCbP0YqQWlaK1_wEvcp5RwjRQpGX6IQVnTVCrlC-HGJrBzzG4OeYfNjg6PC8BezHyXbz47S-_XH9paIaTzb0MPqu_Ka4bLY4hsEHwHlJd3CfcbbjNECPXYrjn80L20Eb40-8ZEi4tRleoxfODhnePLyn6PvF12_rq-rm9vJ6_fmm6jhnc1VS1ZK0SlqtnOZOuZo1jWC2131fc8Go1VI6IUAz0mlQygnLpeMWoHGUs1P06eA7Le0IfQdhTnYwU_KjTfcmWm_-VYLfmk28M0pSJpUqBh8fDFL8tUCezehzB8NgA8Qlm7qhhEjN6qagH_5Dd3FJocTbU-VqqfXe8PxAdSnmnMAdj6HE7As1-0LN30LLxvunGY78Y4MFeHcAdrn0d9RrSakUxfE3BJqmWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616537998</pqid></control><display><type>article</type><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</creator><creatorcontrib>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</creatorcontrib><description>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2111455118</identifier><identifier>PMID: 34903657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 Testing ; Cross-Sectional Studies ; Data transmission ; Decision making ; Demographics ; Demography ; Digital media ; Environmental monitoring ; Epidemiologic Methods ; Global health ; Humans ; Internationality ; Learning algorithms ; Local government ; Machine Learning ; Monitoring ; Pandemics ; Pandemics - statistics &amp; numerical data ; Polls &amp; surveys ; Public health ; Public Health Surveillance - methods ; Social Media ; Social networks ; Social organization ; Social Sciences ; Territory</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (51), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 21, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</citedby><cites>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</cites><orcidid>0000-0003-1826-6600 ; 0000-0002-6864-9952 ; 0000-0002-1592-6880 ; 0000-0002-7339-2645 ; 0000-0002-6095-0193 ; 0000-0002-5063-8470 ; 0000-0002-5626-7463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27117507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27117507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34903657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Astley, Christina M.</creatorcontrib><creatorcontrib>Tuli, Gaurav</creatorcontrib><creatorcontrib>Cord, Kimberly A. Mc</creatorcontrib><creatorcontrib>Cohn, Emily L.</creatorcontrib><creatorcontrib>Rader, Benjamin</creatorcontrib><creatorcontrib>Varrelman, Tanner J.</creatorcontrib><creatorcontrib>Chiu, Samantha L.</creatorcontrib><creatorcontrib>Deng, Xiaoyi</creatorcontrib><creatorcontrib>Stewart, Kathleen</creatorcontrib><creatorcontrib>Farag, Tamer H.</creatorcontrib><creatorcontrib>Barkume, Kristina M.</creatorcontrib><creatorcontrib>LaRocca, Sarah</creatorcontrib><creatorcontrib>Morris, Katherine A.</creatorcontrib><creatorcontrib>Kreuter, Frauke</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</description><subject>Biological Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 Testing</subject><subject>Cross-Sectional Studies</subject><subject>Data transmission</subject><subject>Decision making</subject><subject>Demographics</subject><subject>Demography</subject><subject>Digital media</subject><subject>Environmental monitoring</subject><subject>Epidemiologic Methods</subject><subject>Global health</subject><subject>Humans</subject><subject>Internationality</subject><subject>Learning algorithms</subject><subject>Local government</subject><subject>Machine Learning</subject><subject>Monitoring</subject><subject>Pandemics</subject><subject>Pandemics - statistics &amp; numerical data</subject><subject>Polls &amp; surveys</subject><subject>Public health</subject><subject>Public Health Surveillance - methods</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>Territory</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtHZsx_YFCS30Q6rUC3C1nGS86yWxg51U6n-Pl22Xwskav988zdND6C0lZ5RIdj4Fm89qSikXglL1DK0o0bRquCbP0YqQWlaK1_wEvcp5RwjRQpGX6IQVnTVCrlC-HGJrBzzG4OeYfNjg6PC8BezHyXbz47S-_XH9paIaTzb0MPqu_Ka4bLY4hsEHwHlJd3CfcbbjNECPXYrjn80L20Eb40-8ZEi4tRleoxfODhnePLyn6PvF12_rq-rm9vJ6_fmm6jhnc1VS1ZK0SlqtnOZOuZo1jWC2131fc8Go1VI6IUAz0mlQygnLpeMWoHGUs1P06eA7Le0IfQdhTnYwU_KjTfcmWm_-VYLfmk28M0pSJpUqBh8fDFL8tUCezehzB8NgA8Qlm7qhhEjN6qagH_5Dd3FJocTbU-VqqfXe8PxAdSnmnMAdj6HE7As1-0LN30LLxvunGY78Y4MFeHcAdrn0d9RrSakUxfE3BJqmWg</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Astley, Christina M.</creator><creator>Tuli, Gaurav</creator><creator>Cord, Kimberly A. Mc</creator><creator>Cohn, Emily L.</creator><creator>Rader, Benjamin</creator><creator>Varrelman, Tanner J.</creator><creator>Chiu, Samantha L.</creator><creator>Deng, Xiaoyi</creator><creator>Stewart, Kathleen</creator><creator>Farag, Tamer H.</creator><creator>Barkume, Kristina M.</creator><creator>LaRocca, Sarah</creator><creator>Morris, Katherine A.</creator><creator>Kreuter, Frauke</creator><creator>Brownstein, John S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1826-6600</orcidid><orcidid>https://orcid.org/0000-0002-6864-9952</orcidid><orcidid>https://orcid.org/0000-0002-1592-6880</orcidid><orcidid>https://orcid.org/0000-0002-7339-2645</orcidid><orcidid>https://orcid.org/0000-0002-6095-0193</orcidid><orcidid>https://orcid.org/0000-0002-5063-8470</orcidid><orcidid>https://orcid.org/0000-0002-5626-7463</orcidid></search><sort><creationdate>20211221</creationdate><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><author>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 Testing</topic><topic>Cross-Sectional Studies</topic><topic>Data transmission</topic><topic>Decision making</topic><topic>Demographics</topic><topic>Demography</topic><topic>Digital media</topic><topic>Environmental monitoring</topic><topic>Epidemiologic Methods</topic><topic>Global health</topic><topic>Humans</topic><topic>Internationality</topic><topic>Learning algorithms</topic><topic>Local government</topic><topic>Machine Learning</topic><topic>Monitoring</topic><topic>Pandemics</topic><topic>Pandemics - statistics &amp; numerical data</topic><topic>Polls &amp; surveys</topic><topic>Public health</topic><topic>Public Health Surveillance - methods</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astley, Christina M.</creatorcontrib><creatorcontrib>Tuli, Gaurav</creatorcontrib><creatorcontrib>Cord, Kimberly A. Mc</creatorcontrib><creatorcontrib>Cohn, Emily L.</creatorcontrib><creatorcontrib>Rader, Benjamin</creatorcontrib><creatorcontrib>Varrelman, Tanner J.</creatorcontrib><creatorcontrib>Chiu, Samantha L.</creatorcontrib><creatorcontrib>Deng, Xiaoyi</creatorcontrib><creatorcontrib>Stewart, Kathleen</creatorcontrib><creatorcontrib>Farag, Tamer H.</creatorcontrib><creatorcontrib>Barkume, Kristina M.</creatorcontrib><creatorcontrib>LaRocca, Sarah</creatorcontrib><creatorcontrib>Morris, Katherine A.</creatorcontrib><creatorcontrib>Kreuter, Frauke</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astley, Christina M.</au><au>Tuli, Gaurav</au><au>Cord, Kimberly A. Mc</au><au>Cohn, Emily L.</au><au>Rader, Benjamin</au><au>Varrelman, Tanner J.</au><au>Chiu, Samantha L.</au><au>Deng, Xiaoyi</au><au>Stewart, Kathleen</au><au>Farag, Tamer H.</au><au>Barkume, Kristina M.</au><au>LaRocca, Sarah</au><au>Morris, Katherine A.</au><au>Kreuter, Frauke</au><au>Brownstein, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-12-21</date><risdate>2021</risdate><volume>118</volume><issue>51</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34903657</pmid><doi>10.1073/pnas.2111455118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1826-6600</orcidid><orcidid>https://orcid.org/0000-0002-6864-9952</orcidid><orcidid>https://orcid.org/0000-0002-1592-6880</orcidid><orcidid>https://orcid.org/0000-0002-7339-2645</orcidid><orcidid>https://orcid.org/0000-0002-6095-0193</orcidid><orcidid>https://orcid.org/0000-0002-5063-8470</orcidid><orcidid>https://orcid.org/0000-0002-5626-7463</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (51), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8713788
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - epidemiology
COVID-19 Testing
Cross-Sectional Studies
Data transmission
Decision making
Demographics
Demography
Digital media
Environmental monitoring
Epidemiologic Methods
Global health
Humans
Internationality
Learning algorithms
Local government
Machine Learning
Monitoring
Pandemics
Pandemics - statistics & numerical data
Polls & surveys
Public health
Public Health Surveillance - methods
Social Media
Social networks
Social organization
Social Sciences
Territory
title Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20monitoring%20of%20the%20impact%20of%20the%20COVID-19%20pandemic%20through%20online%20surveys%20sampled%20from%20the%20Facebook%20user%20base&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Astley,%20Christina%20M.&rft.date=2021-12-21&rft.volume=118&rft.issue=51&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2111455118&rft_dat=%3Cjstor_pubme%3E27117507%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616537998&rft_id=info:pmid/34903657&rft_jstor_id=27117507&rfr_iscdi=true