Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base
Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-12, Vol.118 (51), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 51 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Astley, Christina M. Tuli, Gaurav Cord, Kimberly A. Mc Cohn, Emily L. Rader, Benjamin Varrelman, Tanner J. Chiu, Samantha L. Deng, Xiaoyi Stewart, Kathleen Farag, Tamer H. Barkume, Kristina M. LaRocca, Sarah Morris, Katherine A. Kreuter, Frauke Brownstein, John S. |
description | Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale. |
doi_str_mv | 10.1073/pnas.2111455118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8713788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27117507</jstor_id><sourcerecordid>27117507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtHZsx_YFCS30Q6rUC3C1nGS86yWxg51U6n-Pl22Xwskav988zdND6C0lZ5RIdj4Fm89qSikXglL1DK0o0bRquCbP0YqQWlaK1_wEvcp5RwjRQpGX6IQVnTVCrlC-HGJrBzzG4OeYfNjg6PC8BezHyXbz47S-_XH9paIaTzb0MPqu_Ka4bLY4hsEHwHlJd3CfcbbjNECPXYrjn80L20Eb40-8ZEi4tRleoxfODhnePLyn6PvF12_rq-rm9vJ6_fmm6jhnc1VS1ZK0SlqtnOZOuZo1jWC2131fc8Go1VI6IUAz0mlQygnLpeMWoHGUs1P06eA7Le0IfQdhTnYwU_KjTfcmWm_-VYLfmk28M0pSJpUqBh8fDFL8tUCezehzB8NgA8Qlm7qhhEjN6qagH_5Dd3FJocTbU-VqqfXe8PxAdSnmnMAdj6HE7As1-0LN30LLxvunGY78Y4MFeHcAdrn0d9RrSakUxfE3BJqmWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616537998</pqid></control><display><type>article</type><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</creator><creatorcontrib>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</creatorcontrib><description>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2111455118</identifier><identifier>PMID: 34903657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 Testing ; Cross-Sectional Studies ; Data transmission ; Decision making ; Demographics ; Demography ; Digital media ; Environmental monitoring ; Epidemiologic Methods ; Global health ; Humans ; Internationality ; Learning algorithms ; Local government ; Machine Learning ; Monitoring ; Pandemics ; Pandemics - statistics & numerical data ; Polls & surveys ; Public health ; Public Health Surveillance - methods ; Social Media ; Social networks ; Social organization ; Social Sciences ; Territory</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (51), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 21, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</citedby><cites>FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</cites><orcidid>0000-0003-1826-6600 ; 0000-0002-6864-9952 ; 0000-0002-1592-6880 ; 0000-0002-7339-2645 ; 0000-0002-6095-0193 ; 0000-0002-5063-8470 ; 0000-0002-5626-7463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27117507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27117507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34903657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Astley, Christina M.</creatorcontrib><creatorcontrib>Tuli, Gaurav</creatorcontrib><creatorcontrib>Cord, Kimberly A. Mc</creatorcontrib><creatorcontrib>Cohn, Emily L.</creatorcontrib><creatorcontrib>Rader, Benjamin</creatorcontrib><creatorcontrib>Varrelman, Tanner J.</creatorcontrib><creatorcontrib>Chiu, Samantha L.</creatorcontrib><creatorcontrib>Deng, Xiaoyi</creatorcontrib><creatorcontrib>Stewart, Kathleen</creatorcontrib><creatorcontrib>Farag, Tamer H.</creatorcontrib><creatorcontrib>Barkume, Kristina M.</creatorcontrib><creatorcontrib>LaRocca, Sarah</creatorcontrib><creatorcontrib>Morris, Katherine A.</creatorcontrib><creatorcontrib>Kreuter, Frauke</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</description><subject>Biological Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 Testing</subject><subject>Cross-Sectional Studies</subject><subject>Data transmission</subject><subject>Decision making</subject><subject>Demographics</subject><subject>Demography</subject><subject>Digital media</subject><subject>Environmental monitoring</subject><subject>Epidemiologic Methods</subject><subject>Global health</subject><subject>Humans</subject><subject>Internationality</subject><subject>Learning algorithms</subject><subject>Local government</subject><subject>Machine Learning</subject><subject>Monitoring</subject><subject>Pandemics</subject><subject>Pandemics - statistics & numerical data</subject><subject>Polls & surveys</subject><subject>Public health</subject><subject>Public Health Surveillance - methods</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>Territory</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtHZsx_YFCS30Q6rUC3C1nGS86yWxg51U6n-Pl22Xwskav988zdND6C0lZ5RIdj4Fm89qSikXglL1DK0o0bRquCbP0YqQWlaK1_wEvcp5RwjRQpGX6IQVnTVCrlC-HGJrBzzG4OeYfNjg6PC8BezHyXbz47S-_XH9paIaTzb0MPqu_Ka4bLY4hsEHwHlJd3CfcbbjNECPXYrjn80L20Eb40-8ZEi4tRleoxfODhnePLyn6PvF12_rq-rm9vJ6_fmm6jhnc1VS1ZK0SlqtnOZOuZo1jWC2131fc8Go1VI6IUAz0mlQygnLpeMWoHGUs1P06eA7Le0IfQdhTnYwU_KjTfcmWm_-VYLfmk28M0pSJpUqBh8fDFL8tUCezehzB8NgA8Qlm7qhhEjN6qagH_5Dd3FJocTbU-VqqfXe8PxAdSnmnMAdj6HE7As1-0LN30LLxvunGY78Y4MFeHcAdrn0d9RrSakUxfE3BJqmWg</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Astley, Christina M.</creator><creator>Tuli, Gaurav</creator><creator>Cord, Kimberly A. Mc</creator><creator>Cohn, Emily L.</creator><creator>Rader, Benjamin</creator><creator>Varrelman, Tanner J.</creator><creator>Chiu, Samantha L.</creator><creator>Deng, Xiaoyi</creator><creator>Stewart, Kathleen</creator><creator>Farag, Tamer H.</creator><creator>Barkume, Kristina M.</creator><creator>LaRocca, Sarah</creator><creator>Morris, Katherine A.</creator><creator>Kreuter, Frauke</creator><creator>Brownstein, John S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1826-6600</orcidid><orcidid>https://orcid.org/0000-0002-6864-9952</orcidid><orcidid>https://orcid.org/0000-0002-1592-6880</orcidid><orcidid>https://orcid.org/0000-0002-7339-2645</orcidid><orcidid>https://orcid.org/0000-0002-6095-0193</orcidid><orcidid>https://orcid.org/0000-0002-5063-8470</orcidid><orcidid>https://orcid.org/0000-0002-5626-7463</orcidid></search><sort><creationdate>20211221</creationdate><title>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</title><author>Astley, Christina M. ; Tuli, Gaurav ; Cord, Kimberly A. Mc ; Cohn, Emily L. ; Rader, Benjamin ; Varrelman, Tanner J. ; Chiu, Samantha L. ; Deng, Xiaoyi ; Stewart, Kathleen ; Farag, Tamer H. ; Barkume, Kristina M. ; LaRocca, Sarah ; Morris, Katherine A. ; Kreuter, Frauke ; Brownstein, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-111270b87a98f94f8f236653ad9dd24531a977f55e930c9e88f5a47f4aee6f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 Testing</topic><topic>Cross-Sectional Studies</topic><topic>Data transmission</topic><topic>Decision making</topic><topic>Demographics</topic><topic>Demography</topic><topic>Digital media</topic><topic>Environmental monitoring</topic><topic>Epidemiologic Methods</topic><topic>Global health</topic><topic>Humans</topic><topic>Internationality</topic><topic>Learning algorithms</topic><topic>Local government</topic><topic>Machine Learning</topic><topic>Monitoring</topic><topic>Pandemics</topic><topic>Pandemics - statistics & numerical data</topic><topic>Polls & surveys</topic><topic>Public health</topic><topic>Public Health Surveillance - methods</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astley, Christina M.</creatorcontrib><creatorcontrib>Tuli, Gaurav</creatorcontrib><creatorcontrib>Cord, Kimberly A. Mc</creatorcontrib><creatorcontrib>Cohn, Emily L.</creatorcontrib><creatorcontrib>Rader, Benjamin</creatorcontrib><creatorcontrib>Varrelman, Tanner J.</creatorcontrib><creatorcontrib>Chiu, Samantha L.</creatorcontrib><creatorcontrib>Deng, Xiaoyi</creatorcontrib><creatorcontrib>Stewart, Kathleen</creatorcontrib><creatorcontrib>Farag, Tamer H.</creatorcontrib><creatorcontrib>Barkume, Kristina M.</creatorcontrib><creatorcontrib>LaRocca, Sarah</creatorcontrib><creatorcontrib>Morris, Katherine A.</creatorcontrib><creatorcontrib>Kreuter, Frauke</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astley, Christina M.</au><au>Tuli, Gaurav</au><au>Cord, Kimberly A. Mc</au><au>Cohn, Emily L.</au><au>Rader, Benjamin</au><au>Varrelman, Tanner J.</au><au>Chiu, Samantha L.</au><au>Deng, Xiaoyi</au><au>Stewart, Kathleen</au><au>Farag, Tamer H.</au><au>Barkume, Kristina M.</au><au>LaRocca, Sarah</au><au>Morris, Katherine A.</au><au>Kreuter, Frauke</au><au>Brownstein, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-12-21</date><risdate>2021</risdate><volume>118</volume><issue>51</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34903657</pmid><doi>10.1073/pnas.2111455118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1826-6600</orcidid><orcidid>https://orcid.org/0000-0002-6864-9952</orcidid><orcidid>https://orcid.org/0000-0002-1592-6880</orcidid><orcidid>https://orcid.org/0000-0002-7339-2645</orcidid><orcidid>https://orcid.org/0000-0002-6095-0193</orcidid><orcidid>https://orcid.org/0000-0002-5063-8470</orcidid><orcidid>https://orcid.org/0000-0002-5626-7463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (51), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8713788 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - epidemiology COVID-19 Testing Cross-Sectional Studies Data transmission Decision making Demographics Demography Digital media Environmental monitoring Epidemiologic Methods Global health Humans Internationality Learning algorithms Local government Machine Learning Monitoring Pandemics Pandemics - statistics & numerical data Polls & surveys Public health Public Health Surveillance - methods Social Media Social networks Social organization Social Sciences Territory |
title | Global monitoring of the impact of the COVID-19 pandemic through online surveys sampled from the Facebook user base |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20monitoring%20of%20the%20impact%20of%20the%20COVID-19%20pandemic%20through%20online%20surveys%20sampled%20from%20the%20Facebook%20user%20base&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Astley,%20Christina%20M.&rft.date=2021-12-21&rft.volume=118&rft.issue=51&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2111455118&rft_dat=%3Cjstor_pubme%3E27117507%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616537998&rft_id=info:pmid/34903657&rft_jstor_id=27117507&rfr_iscdi=true |