Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering

A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.14 (24), p.7684
Hauptverfasser: Muenwacha, Thanapon, Weeranantanapan, Oratai, Chudapongse, Nuannoi, Diaz Sanchez, Francisco Javier, Maensiri, Santi, Radacsi, Norbert, Nuansing, Wiwat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 7684
container_title Materials
container_volume 14
creator Muenwacha, Thanapon
Weeranantanapan, Oratai
Chudapongse, Nuannoi
Diaz Sanchez, Francisco Javier
Maensiri, Santi
Radacsi, Norbert
Nuansing, Wiwat
description A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus . In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.
doi_str_mv 10.3390/ma14247684
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612808703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMo7tL2xQ8gAV9EGJt_ZjIvgtRdLSxVcH01ZDI3a9aZZJvMFOqnN3W3a21eckl-HO45B6EXlLzlvCHng6GCiVoq8QTNadPIijZCPH0wz9BZzltSDudUseY5mnHRiJopNUc_lqZN3prRx4Cjw189_I7Qgx3LK178HWLeTQGvIQ1-BHwFeax6_wsw_4i_WeNc7LuMXUx47XOeAC_CxgeA5MPmFD1zps9wdrhP0PflYn3xuVp9-XR58WFVWUHkWAnSOEUFMZ11NQVuGaHS2rYTjLZgCZMSbO2gWDKilYzyRjrbddy2hgtS8xP0fq-7m9oBOgthTKbXu-QHk251NF7__xP8T72JN1rVRAn5rgi8PgikeD0Vi3rw2ULfmwBxyprJEnOJj9CCvnqEbuOUQrF3RzFFiiYv1Js9ZUt-OYE7LkOJvmtO_2uuwC8frn9E73vifwBskJR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612808703</pqid></control><display><type>article</type><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</creator><creatorcontrib>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</creatorcontrib><description>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus . In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14247684</identifier><identifier>PMID: 34947288</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biological properties ; Biomedical materials ; Biomimetics ; Cell adhesion &amp; migration ; Cell growth ; Dimethylformamide ; Electrodes ; Electrospinning ; Fluorides ; Generators ; Morphology ; Nanofibers ; Piezoelectricity ; Polymers ; Scaffolds ; Scanning electron microscopy ; Shape optimization ; Software ; Tissue engineering ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Materials, 2021-12, Vol.14 (24), p.7684</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</citedby><cites>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</cites><orcidid>0000-0001-7808-3684 ; 0000-0003-2959-7085 ; 0000-0002-7358-951X ; 0000-0001-7040-8245 ; 0000-0002-7412-5215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708465/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708465/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34947288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muenwacha, Thanapon</creatorcontrib><creatorcontrib>Weeranantanapan, Oratai</creatorcontrib><creatorcontrib>Chudapongse, Nuannoi</creatorcontrib><creatorcontrib>Diaz Sanchez, Francisco Javier</creatorcontrib><creatorcontrib>Maensiri, Santi</creatorcontrib><creatorcontrib>Radacsi, Norbert</creatorcontrib><creatorcontrib>Nuansing, Wiwat</creatorcontrib><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus . In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</description><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell growth</subject><subject>Dimethylformamide</subject><subject>Electrodes</subject><subject>Electrospinning</subject><subject>Fluorides</subject><subject>Generators</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Shape optimization</subject><subject>Software</subject><subject>Tissue engineering</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV9rFDEUxYMo7tL2xQ8gAV9EGJt_ZjIvgtRdLSxVcH01ZDI3a9aZZJvMFOqnN3W3a21eckl-HO45B6EXlLzlvCHng6GCiVoq8QTNadPIijZCPH0wz9BZzltSDudUseY5mnHRiJopNUc_lqZN3prRx4Cjw189_I7Qgx3LK178HWLeTQGvIQ1-BHwFeax6_wsw_4i_WeNc7LuMXUx47XOeAC_CxgeA5MPmFD1zps9wdrhP0PflYn3xuVp9-XR58WFVWUHkWAnSOEUFMZ11NQVuGaHS2rYTjLZgCZMSbO2gWDKilYzyRjrbddy2hgtS8xP0fq-7m9oBOgthTKbXu-QHk251NF7__xP8T72JN1rVRAn5rgi8PgikeD0Vi3rw2ULfmwBxyprJEnOJj9CCvnqEbuOUQrF3RzFFiiYv1Js9ZUt-OYE7LkOJvmtO_2uuwC8frn9E73vifwBskJR8</recordid><startdate>20211213</startdate><enddate>20211213</enddate><creator>Muenwacha, Thanapon</creator><creator>Weeranantanapan, Oratai</creator><creator>Chudapongse, Nuannoi</creator><creator>Diaz Sanchez, Francisco Javier</creator><creator>Maensiri, Santi</creator><creator>Radacsi, Norbert</creator><creator>Nuansing, Wiwat</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7808-3684</orcidid><orcidid>https://orcid.org/0000-0003-2959-7085</orcidid><orcidid>https://orcid.org/0000-0002-7358-951X</orcidid><orcidid>https://orcid.org/0000-0001-7040-8245</orcidid><orcidid>https://orcid.org/0000-0002-7412-5215</orcidid></search><sort><creationdate>20211213</creationdate><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><author>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell growth</topic><topic>Dimethylformamide</topic><topic>Electrodes</topic><topic>Electrospinning</topic><topic>Fluorides</topic><topic>Generators</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Shape optimization</topic><topic>Software</topic><topic>Tissue engineering</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muenwacha, Thanapon</creatorcontrib><creatorcontrib>Weeranantanapan, Oratai</creatorcontrib><creatorcontrib>Chudapongse, Nuannoi</creatorcontrib><creatorcontrib>Diaz Sanchez, Francisco Javier</creatorcontrib><creatorcontrib>Maensiri, Santi</creatorcontrib><creatorcontrib>Radacsi, Norbert</creatorcontrib><creatorcontrib>Nuansing, Wiwat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muenwacha, Thanapon</au><au>Weeranantanapan, Oratai</au><au>Chudapongse, Nuannoi</au><au>Diaz Sanchez, Francisco Javier</au><au>Maensiri, Santi</au><au>Radacsi, Norbert</au><au>Nuansing, Wiwat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-13</date><risdate>2021</risdate><volume>14</volume><issue>24</issue><spage>7684</spage><pages>7684-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus . In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34947288</pmid><doi>10.3390/ma14247684</doi><orcidid>https://orcid.org/0000-0001-7808-3684</orcidid><orcidid>https://orcid.org/0000-0003-2959-7085</orcidid><orcidid>https://orcid.org/0000-0002-7358-951X</orcidid><orcidid>https://orcid.org/0000-0001-7040-8245</orcidid><orcidid>https://orcid.org/0000-0002-7412-5215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-12, Vol.14 (24), p.7684
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708465
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biological properties
Biomedical materials
Biomimetics
Cell adhesion & migration
Cell growth
Dimethylformamide
Electrodes
Electrospinning
Fluorides
Generators
Morphology
Nanofibers
Piezoelectricity
Polymers
Scaffolds
Scanning electron microscopy
Shape optimization
Software
Tissue engineering
Vinylidene
Vinylidene fluoride
title Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Piezoelectric%20Electrospun%20Termite%20Nest-like%203D%20Scaffolds%20for%20Tissue%20Engineering&rft.jtitle=Materials&rft.au=Muenwacha,%20Thanapon&rft.date=2021-12-13&rft.volume=14&rft.issue=24&rft.spage=7684&rft.pages=7684-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14247684&rft_dat=%3Cproquest_pubme%3E2612808703%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612808703&rft_id=info:pmid/34947288&rfr_iscdi=true