Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering
A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for...
Gespeichert in:
Veröffentlicht in: | Materials 2021-12, Vol.14 (24), p.7684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 7684 |
container_title | Materials |
container_volume | 14 |
creator | Muenwacha, Thanapon Weeranantanapan, Oratai Chudapongse, Nuannoi Diaz Sanchez, Francisco Javier Maensiri, Santi Radacsi, Norbert Nuansing, Wiwat |
description | A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus
. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties. |
doi_str_mv | 10.3390/ma14247684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612808703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMo7tL2xQ8gAV9EGJt_ZjIvgtRdLSxVcH01ZDI3a9aZZJvMFOqnN3W3a21eckl-HO45B6EXlLzlvCHng6GCiVoq8QTNadPIijZCPH0wz9BZzltSDudUseY5mnHRiJopNUc_lqZN3prRx4Cjw189_I7Qgx3LK178HWLeTQGvIQ1-BHwFeax6_wsw_4i_WeNc7LuMXUx47XOeAC_CxgeA5MPmFD1zps9wdrhP0PflYn3xuVp9-XR58WFVWUHkWAnSOEUFMZ11NQVuGaHS2rYTjLZgCZMSbO2gWDKilYzyRjrbddy2hgtS8xP0fq-7m9oBOgthTKbXu-QHk251NF7__xP8T72JN1rVRAn5rgi8PgikeD0Vi3rw2ULfmwBxyprJEnOJj9CCvnqEbuOUQrF3RzFFiiYv1Js9ZUt-OYE7LkOJvmtO_2uuwC8frn9E73vifwBskJR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612808703</pqid></control><display><type>article</type><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</creator><creatorcontrib>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</creatorcontrib><description>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus
. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14247684</identifier><identifier>PMID: 34947288</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biological properties ; Biomedical materials ; Biomimetics ; Cell adhesion & migration ; Cell growth ; Dimethylformamide ; Electrodes ; Electrospinning ; Fluorides ; Generators ; Morphology ; Nanofibers ; Piezoelectricity ; Polymers ; Scaffolds ; Scanning electron microscopy ; Shape optimization ; Software ; Tissue engineering ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Materials, 2021-12, Vol.14 (24), p.7684</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</citedby><cites>FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</cites><orcidid>0000-0001-7808-3684 ; 0000-0003-2959-7085 ; 0000-0002-7358-951X ; 0000-0001-7040-8245 ; 0000-0002-7412-5215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708465/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708465/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34947288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muenwacha, Thanapon</creatorcontrib><creatorcontrib>Weeranantanapan, Oratai</creatorcontrib><creatorcontrib>Chudapongse, Nuannoi</creatorcontrib><creatorcontrib>Diaz Sanchez, Francisco Javier</creatorcontrib><creatorcontrib>Maensiri, Santi</creatorcontrib><creatorcontrib>Radacsi, Norbert</creatorcontrib><creatorcontrib>Nuansing, Wiwat</creatorcontrib><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus
. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</description><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Cell adhesion & migration</subject><subject>Cell growth</subject><subject>Dimethylformamide</subject><subject>Electrodes</subject><subject>Electrospinning</subject><subject>Fluorides</subject><subject>Generators</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Shape optimization</subject><subject>Software</subject><subject>Tissue engineering</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV9rFDEUxYMo7tL2xQ8gAV9EGJt_ZjIvgtRdLSxVcH01ZDI3a9aZZJvMFOqnN3W3a21eckl-HO45B6EXlLzlvCHng6GCiVoq8QTNadPIijZCPH0wz9BZzltSDudUseY5mnHRiJopNUc_lqZN3prRx4Cjw189_I7Qgx3LK178HWLeTQGvIQ1-BHwFeax6_wsw_4i_WeNc7LuMXUx47XOeAC_CxgeA5MPmFD1zps9wdrhP0PflYn3xuVp9-XR58WFVWUHkWAnSOEUFMZ11NQVuGaHS2rYTjLZgCZMSbO2gWDKilYzyRjrbddy2hgtS8xP0fq-7m9oBOgthTKbXu-QHk251NF7__xP8T72JN1rVRAn5rgi8PgikeD0Vi3rw2ULfmwBxyprJEnOJj9CCvnqEbuOUQrF3RzFFiiYv1Js9ZUt-OYE7LkOJvmtO_2uuwC8frn9E73vifwBskJR8</recordid><startdate>20211213</startdate><enddate>20211213</enddate><creator>Muenwacha, Thanapon</creator><creator>Weeranantanapan, Oratai</creator><creator>Chudapongse, Nuannoi</creator><creator>Diaz Sanchez, Francisco Javier</creator><creator>Maensiri, Santi</creator><creator>Radacsi, Norbert</creator><creator>Nuansing, Wiwat</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7808-3684</orcidid><orcidid>https://orcid.org/0000-0003-2959-7085</orcidid><orcidid>https://orcid.org/0000-0002-7358-951X</orcidid><orcidid>https://orcid.org/0000-0001-7040-8245</orcidid><orcidid>https://orcid.org/0000-0002-7412-5215</orcidid></search><sort><creationdate>20211213</creationdate><title>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</title><author>Muenwacha, Thanapon ; Weeranantanapan, Oratai ; Chudapongse, Nuannoi ; Diaz Sanchez, Francisco Javier ; Maensiri, Santi ; Radacsi, Norbert ; Nuansing, Wiwat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-409f8140adcf71e3c2016ccbd421bec0266ec7fe996a4b621396fcdd3cba34073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Cell adhesion & migration</topic><topic>Cell growth</topic><topic>Dimethylformamide</topic><topic>Electrodes</topic><topic>Electrospinning</topic><topic>Fluorides</topic><topic>Generators</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Shape optimization</topic><topic>Software</topic><topic>Tissue engineering</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muenwacha, Thanapon</creatorcontrib><creatorcontrib>Weeranantanapan, Oratai</creatorcontrib><creatorcontrib>Chudapongse, Nuannoi</creatorcontrib><creatorcontrib>Diaz Sanchez, Francisco Javier</creatorcontrib><creatorcontrib>Maensiri, Santi</creatorcontrib><creatorcontrib>Radacsi, Norbert</creatorcontrib><creatorcontrib>Nuansing, Wiwat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muenwacha, Thanapon</au><au>Weeranantanapan, Oratai</au><au>Chudapongse, Nuannoi</au><au>Diaz Sanchez, Francisco Javier</au><au>Maensiri, Santi</au><au>Radacsi, Norbert</au><au>Nuansing, Wiwat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-13</date><risdate>2021</risdate><volume>14</volume><issue>24</issue><spage>7684</spage><pages>7684-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus
. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34947288</pmid><doi>10.3390/ma14247684</doi><orcidid>https://orcid.org/0000-0001-7808-3684</orcidid><orcidid>https://orcid.org/0000-0003-2959-7085</orcidid><orcidid>https://orcid.org/0000-0002-7358-951X</orcidid><orcidid>https://orcid.org/0000-0001-7040-8245</orcidid><orcidid>https://orcid.org/0000-0002-7412-5215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-12, Vol.14 (24), p.7684 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8708465 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biological properties Biomedical materials Biomimetics Cell adhesion & migration Cell growth Dimethylformamide Electrodes Electrospinning Fluorides Generators Morphology Nanofibers Piezoelectricity Polymers Scaffolds Scanning electron microscopy Shape optimization Software Tissue engineering Vinylidene Vinylidene fluoride |
title | Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Piezoelectric%20Electrospun%20Termite%20Nest-like%203D%20Scaffolds%20for%20Tissue%20Engineering&rft.jtitle=Materials&rft.au=Muenwacha,%20Thanapon&rft.date=2021-12-13&rft.volume=14&rft.issue=24&rft.spage=7684&rft.pages=7684-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14247684&rft_dat=%3Cproquest_pubme%3E2612808703%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612808703&rft_id=info:pmid/34947288&rfr_iscdi=true |