Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe

Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-12, Vol.22 (24), p.13272
Hauptverfasser: Péter, Mária, Gudmann, Péter, Kóta, Zoltán, Török, Zsolt, Vígh, László, Glatz, Attila, Balogh, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 13272
container_title International journal of molecular sciences
container_volume 22
creator Péter, Mária
Gudmann, Péter
Kóta, Zoltán
Török, Zsolt
Vígh, László
Glatz, Attila
Balogh, Gábor
description Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed mutants which are unable to synthesize ( ) or degrade ( ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.
doi_str_mv 10.3390/ijms222413272
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614229378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVoyW6THHMNgl5ycStrZMu6FJalbQobcsieI2R5lNViW67kDWx_fbwkDZucZmA-Hu_NI-QyZ98AFPvut13inIscuOQnZJ4LzjPGSvnpaJ-RLyltGePAC3VKZiCUqFip5uRh5QffJGr6hq4jbkwbEtKFHf0Ttnu6DGHAaEakvqc3aEZ6P0ZMid6a3jxih_1Ig6P3duP_hWSs3ZgYur3FRIfQ1XhOPjvTJrx4nWdk_evnenmTre5-_1kuVpkVeTFmNq8cr5g1Tua2LrmrAWUNshLQNFWOzDEHCA1i4UpnEZwouZIClChMo-CM_HiRHXZ1h42dbEXT6iH6zsS9Dsbr95feb_RjeNKVZLKo2CRw_SoQw98dplF3PllsW9Nj2CXNy8Mv1eRoQr9-QLdhF_sp3YHiUkEFMFHZC2VjSCmiezOTM30oTr8rbuKvjhO80f-bgme_apYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612793833</pqid></control><display><type>article</type><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</creator><creatorcontrib>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</creatorcontrib><description>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed mutants which are unable to synthesize ( ) or degrade ( ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222413272</identifier><identifier>PMID: 34948069</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell cycle ; Cell membranes ; Crosstalk ; Enzymes ; Glucose ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Heat ; Heat stress ; Homeostasis ; Hot Temperature ; Lipidomics - methods ; Lipids ; Mass Spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Mutation ; Oleic acid ; Oleic Acid - metabolism ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Physicochemical properties ; Proteins ; Schizosaccharomyces - genetics ; Schizosaccharomyces - growth &amp; development ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Scientific imaging ; Sensors ; Stearic acid ; Trehalose ; Trehalose - metabolism ; Triglycerides ; Triglycerides - metabolism ; Yeast</subject><ispartof>International journal of molecular sciences, 2021-12, Vol.22 (24), p.13272</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</citedby><cites>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</cites><orcidid>0000-0003-0362-6933 ; 0000-0002-4565-6850 ; 0000-0003-0836-3247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34948069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Péter, Mária</creatorcontrib><creatorcontrib>Gudmann, Péter</creatorcontrib><creatorcontrib>Kóta, Zoltán</creatorcontrib><creatorcontrib>Török, Zsolt</creatorcontrib><creatorcontrib>Vígh, László</creatorcontrib><creatorcontrib>Glatz, Attila</creatorcontrib><creatorcontrib>Balogh, Gábor</creatorcontrib><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed mutants which are unable to synthesize ( ) or degrade ( ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</description><subject>Cell cycle</subject><subject>Cell membranes</subject><subject>Crosstalk</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Homeostasis</subject><subject>Hot Temperature</subject><subject>Lipidomics - methods</subject><subject>Lipids</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mutation</subject><subject>Oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Physicochemical properties</subject><subject>Proteins</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - growth &amp; development</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Stearic acid</subject><subject>Trehalose</subject><subject>Trehalose - metabolism</subject><subject>Triglycerides</subject><subject>Triglycerides - metabolism</subject><subject>Yeast</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUFr3DAQhUVoyW6THHMNgl5ycStrZMu6FJalbQobcsieI2R5lNViW67kDWx_fbwkDZucZmA-Hu_NI-QyZ98AFPvut13inIscuOQnZJ4LzjPGSvnpaJ-RLyltGePAC3VKZiCUqFip5uRh5QffJGr6hq4jbkwbEtKFHf0Ttnu6DGHAaEakvqc3aEZ6P0ZMid6a3jxih_1Ig6P3duP_hWSs3ZgYur3FRIfQ1XhOPjvTJrx4nWdk_evnenmTre5-_1kuVpkVeTFmNq8cr5g1Tua2LrmrAWUNshLQNFWOzDEHCA1i4UpnEZwouZIClChMo-CM_HiRHXZ1h42dbEXT6iH6zsS9Dsbr95feb_RjeNKVZLKo2CRw_SoQw98dplF3PllsW9Nj2CXNy8Mv1eRoQr9-QLdhF_sp3YHiUkEFMFHZC2VjSCmiezOTM30oTr8rbuKvjhO80f-bgme_apYQ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Péter, Mária</creator><creator>Gudmann, Péter</creator><creator>Kóta, Zoltán</creator><creator>Török, Zsolt</creator><creator>Vígh, László</creator><creator>Glatz, Attila</creator><creator>Balogh, Gábor</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0362-6933</orcidid><orcidid>https://orcid.org/0000-0002-4565-6850</orcidid><orcidid>https://orcid.org/0000-0003-0836-3247</orcidid></search><sort><creationdate>20211209</creationdate><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><author>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cell membranes</topic><topic>Crosstalk</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Homeostasis</topic><topic>Hot Temperature</topic><topic>Lipidomics - methods</topic><topic>Lipids</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mutation</topic><topic>Oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Physicochemical properties</topic><topic>Proteins</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - growth &amp; development</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Stearic acid</topic><topic>Trehalose</topic><topic>Trehalose - metabolism</topic><topic>Triglycerides</topic><topic>Triglycerides - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Péter, Mária</creatorcontrib><creatorcontrib>Gudmann, Péter</creatorcontrib><creatorcontrib>Kóta, Zoltán</creatorcontrib><creatorcontrib>Török, Zsolt</creatorcontrib><creatorcontrib>Vígh, László</creatorcontrib><creatorcontrib>Glatz, Attila</creatorcontrib><creatorcontrib>Balogh, Gábor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Péter, Mária</au><au>Gudmann, Péter</au><au>Kóta, Zoltán</au><au>Török, Zsolt</au><au>Vígh, László</au><au>Glatz, Attila</au><au>Balogh, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-12-09</date><risdate>2021</risdate><volume>22</volume><issue>24</issue><spage>13272</spage><pages>13272-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed mutants which are unable to synthesize ( ) or degrade ( ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34948069</pmid><doi>10.3390/ijms222413272</doi><orcidid>https://orcid.org/0000-0003-0362-6933</orcidid><orcidid>https://orcid.org/0000-0002-4565-6850</orcidid><orcidid>https://orcid.org/0000-0003-0836-3247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-12, Vol.22 (24), p.13272
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707580
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell cycle
Cell membranes
Crosstalk
Enzymes
Glucose
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Heat
Heat stress
Homeostasis
Hot Temperature
Lipidomics - methods
Lipids
Mass Spectrometry
Mass spectroscopy
Metabolism
Metabolites
Mutation
Oleic acid
Oleic Acid - metabolism
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Physicochemical properties
Proteins
Schizosaccharomyces - genetics
Schizosaccharomyces - growth & development
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Scientific imaging
Sensors
Stearic acid
Trehalose
Trehalose - metabolism
Triglycerides
Triglycerides - metabolism
Yeast
title Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipids%20and%20Trehalose%20Actively%20Cooperate%20in%20Heat%20Stress%20Management%20of%20Schizosaccharomyces%20pombe&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=P%C3%A9ter,%20M%C3%A1ria&rft.date=2021-12-09&rft.volume=22&rft.issue=24&rft.spage=13272&rft.pages=13272-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222413272&rft_dat=%3Cproquest_pubme%3E2614229378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612793833&rft_id=info:pmid/34948069&rfr_iscdi=true