Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe
Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-12, Vol.22 (24), p.13272 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 13272 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Péter, Mária Gudmann, Péter Kóta, Zoltán Török, Zsolt Vígh, László Glatz, Attila Balogh, Gábor |
description | Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed
mutants which are unable to synthesize (
) or degrade (
) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells. |
doi_str_mv | 10.3390/ijms222413272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614229378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVoyW6THHMNgl5ycStrZMu6FJalbQobcsieI2R5lNViW67kDWx_fbwkDZucZmA-Hu_NI-QyZ98AFPvut13inIscuOQnZJ4LzjPGSvnpaJ-RLyltGePAC3VKZiCUqFip5uRh5QffJGr6hq4jbkwbEtKFHf0Ttnu6DGHAaEakvqc3aEZ6P0ZMid6a3jxih_1Ig6P3duP_hWSs3ZgYur3FRIfQ1XhOPjvTJrx4nWdk_evnenmTre5-_1kuVpkVeTFmNq8cr5g1Tua2LrmrAWUNshLQNFWOzDEHCA1i4UpnEZwouZIClChMo-CM_HiRHXZ1h42dbEXT6iH6zsS9Dsbr95feb_RjeNKVZLKo2CRw_SoQw98dplF3PllsW9Nj2CXNy8Mv1eRoQr9-QLdhF_sp3YHiUkEFMFHZC2VjSCmiezOTM30oTr8rbuKvjhO80f-bgme_apYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612793833</pqid></control><display><type>article</type><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</creator><creatorcontrib>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</creatorcontrib><description>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed
mutants which are unable to synthesize (
) or degrade (
) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222413272</identifier><identifier>PMID: 34948069</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell cycle ; Cell membranes ; Crosstalk ; Enzymes ; Glucose ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Heat ; Heat stress ; Homeostasis ; Hot Temperature ; Lipidomics - methods ; Lipids ; Mass Spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Mutation ; Oleic acid ; Oleic Acid - metabolism ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Physicochemical properties ; Proteins ; Schizosaccharomyces - genetics ; Schizosaccharomyces - growth & development ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Scientific imaging ; Sensors ; Stearic acid ; Trehalose ; Trehalose - metabolism ; Triglycerides ; Triglycerides - metabolism ; Yeast</subject><ispartof>International journal of molecular sciences, 2021-12, Vol.22 (24), p.13272</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</citedby><cites>FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</cites><orcidid>0000-0003-0362-6933 ; 0000-0002-4565-6850 ; 0000-0003-0836-3247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34948069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Péter, Mária</creatorcontrib><creatorcontrib>Gudmann, Péter</creatorcontrib><creatorcontrib>Kóta, Zoltán</creatorcontrib><creatorcontrib>Török, Zsolt</creatorcontrib><creatorcontrib>Vígh, László</creatorcontrib><creatorcontrib>Glatz, Attila</creatorcontrib><creatorcontrib>Balogh, Gábor</creatorcontrib><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed
mutants which are unable to synthesize (
) or degrade (
) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</description><subject>Cell cycle</subject><subject>Cell membranes</subject><subject>Crosstalk</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Homeostasis</subject><subject>Hot Temperature</subject><subject>Lipidomics - methods</subject><subject>Lipids</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mutation</subject><subject>Oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Physicochemical properties</subject><subject>Proteins</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - growth & development</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Stearic acid</subject><subject>Trehalose</subject><subject>Trehalose - metabolism</subject><subject>Triglycerides</subject><subject>Triglycerides - metabolism</subject><subject>Yeast</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUFr3DAQhUVoyW6THHMNgl5ycStrZMu6FJalbQobcsieI2R5lNViW67kDWx_fbwkDZucZmA-Hu_NI-QyZ98AFPvut13inIscuOQnZJ4LzjPGSvnpaJ-RLyltGePAC3VKZiCUqFip5uRh5QffJGr6hq4jbkwbEtKFHf0Ttnu6DGHAaEakvqc3aEZ6P0ZMid6a3jxih_1Ig6P3duP_hWSs3ZgYur3FRIfQ1XhOPjvTJrx4nWdk_evnenmTre5-_1kuVpkVeTFmNq8cr5g1Tua2LrmrAWUNshLQNFWOzDEHCA1i4UpnEZwouZIClChMo-CM_HiRHXZ1h42dbEXT6iH6zsS9Dsbr95feb_RjeNKVZLKo2CRw_SoQw98dplF3PllsW9Nj2CXNy8Mv1eRoQr9-QLdhF_sp3YHiUkEFMFHZC2VjSCmiezOTM30oTr8rbuKvjhO80f-bgme_apYQ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Péter, Mária</creator><creator>Gudmann, Péter</creator><creator>Kóta, Zoltán</creator><creator>Török, Zsolt</creator><creator>Vígh, László</creator><creator>Glatz, Attila</creator><creator>Balogh, Gábor</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0362-6933</orcidid><orcidid>https://orcid.org/0000-0002-4565-6850</orcidid><orcidid>https://orcid.org/0000-0003-0836-3247</orcidid></search><sort><creationdate>20211209</creationdate><title>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</title><author>Péter, Mária ; Gudmann, Péter ; Kóta, Zoltán ; Török, Zsolt ; Vígh, László ; Glatz, Attila ; Balogh, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c18f280caf71cb62fb3e7b37843dd81e0f0f3e3dee5f6fce3f4629743945ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cell membranes</topic><topic>Crosstalk</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Homeostasis</topic><topic>Hot Temperature</topic><topic>Lipidomics - methods</topic><topic>Lipids</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mutation</topic><topic>Oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Physicochemical properties</topic><topic>Proteins</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - growth & development</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Stearic acid</topic><topic>Trehalose</topic><topic>Trehalose - metabolism</topic><topic>Triglycerides</topic><topic>Triglycerides - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Péter, Mária</creatorcontrib><creatorcontrib>Gudmann, Péter</creatorcontrib><creatorcontrib>Kóta, Zoltán</creatorcontrib><creatorcontrib>Török, Zsolt</creatorcontrib><creatorcontrib>Vígh, László</creatorcontrib><creatorcontrib>Glatz, Attila</creatorcontrib><creatorcontrib>Balogh, Gábor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Péter, Mária</au><au>Gudmann, Péter</au><au>Kóta, Zoltán</au><au>Török, Zsolt</au><au>Vígh, László</au><au>Glatz, Attila</au><au>Balogh, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-12-09</date><risdate>2021</risdate><volume>22</volume><issue>24</issue><spage>13272</spage><pages>13272-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed
mutants which are unable to synthesize (
) or degrade (
) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34948069</pmid><doi>10.3390/ijms222413272</doi><orcidid>https://orcid.org/0000-0003-0362-6933</orcidid><orcidid>https://orcid.org/0000-0002-4565-6850</orcidid><orcidid>https://orcid.org/0000-0003-0836-3247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-12, Vol.22 (24), p.13272 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8707580 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cell cycle Cell membranes Crosstalk Enzymes Glucose Glucosyltransferases - genetics Glucosyltransferases - metabolism Heat Heat stress Homeostasis Hot Temperature Lipidomics - methods Lipids Mass Spectrometry Mass spectroscopy Metabolism Metabolites Mutation Oleic acid Oleic Acid - metabolism Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Physicochemical properties Proteins Schizosaccharomyces - genetics Schizosaccharomyces - growth & development Schizosaccharomyces - metabolism Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Scientific imaging Sensors Stearic acid Trehalose Trehalose - metabolism Triglycerides Triglycerides - metabolism Yeast |
title | Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipids%20and%20Trehalose%20Actively%20Cooperate%20in%20Heat%20Stress%20Management%20of%20Schizosaccharomyces%20pombe&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=P%C3%A9ter,%20M%C3%A1ria&rft.date=2021-12-09&rft.volume=22&rft.issue=24&rft.spage=13272&rft.pages=13272-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222413272&rft_dat=%3Cproquest_pubme%3E2614229378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612793833&rft_id=info:pmid/34948069&rfr_iscdi=true |