Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface

The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy's properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.14 (24), p.7504
Hauptverfasser: Liu, Pan, Song, Yan, Chai, Mengyu, Han, Zelin, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 7504
container_title Materials
container_volume 14
creator Liu, Pan
Song, Yan
Chai, Mengyu
Han, Zelin
Zhang, Yu
description The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy's properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in the micro-features identification of alloy. However, with the development of the transformer in image recognition, the transformer-based neural network performs better on the learning of global and long-range semantic information than CNN and achieves higher prediction accuracy. In this work, a new transformer-based neural network model Swin-UNet++ was proposed. Specifically, the architecture of the decoder was redesigned to more precisely detect and identify the micro-feature with complex morphology (i.e., dimples) of 2.25Cr1Mo0.25V steel fracture surface. Swin-UNet++ and other segmentation models performed state-of-the-art (SOTA) were compared on the dimple dataset constructed in this work, which consists of 830 dimple scanning electron microscopy (SEM) images on 2.25Cr1Mo0.25V steel fracture surface. The segmentation results show Swin-UNet++ not only realizes the accurate identification of dimples but displays a much higher prediction accuracy and stronger robustness than Swin-Unet and UNet. Moreover, efforts from this work will also provide an important reference value to the identification of other micro-features with complex morphologies.
doi_str_mv 10.3390/ma14247504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8703304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612792309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-2f28b3d1d3bafde616ce14a7c412b5eaf4a14dae92cd483ce4ffc1b557ffb3763</originalsourceid><addsrcrecordid>eNpdkV1PFDEUhhsjEYLc-ANME2-MZLBf81EvTDarIMmCF4C3Tac93S2ZmS7tjIa_4q-1yy6I9qbn48nb0_Mi9IaSE84l-dhrKpioSyJeoAMqZVVQKcTLZ_E-OkrpluTDOW2YfIX2uZCiJrI5QL-vfvmhuLmE8fj4E57hS0gjWLyp4uuoh-RC7CHiWTQrP4IZpwg41_AiGD36MOBzC8Pond-lerD4IsT1KnRheY-vYNnn_rYXHP7i-3UHCeeMnbByHulFIDn4gU-jflDPj0_RaQOv0Z7TXYKj3X2Ibk6_Xs-_FYvvZ-fz2aIwvKlFwRxrWm6p5a12FipaGaBC10ZQ1pagncgbshokM1Y03IBwztC2LGvnWl5X_BB93uqup7YHa_K4UXdqHX2v470K2qt_O4NfqWX4qZo6b5SILPB-JxDD3ZQXqHqfDHSdHiBMSbEqW8RZU7GMvvsPvQ1THPL3NhSrJeNEZurDljIxpBTBPQ1Didq4rv66nuG3z8d_Qh895n8AEf6pHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612792309</pqid></control><display><type>article</type><title>Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Pan ; Song, Yan ; Chai, Mengyu ; Han, Zelin ; Zhang, Yu</creator><creatorcontrib>Liu, Pan ; Song, Yan ; Chai, Mengyu ; Han, Zelin ; Zhang, Yu</creatorcontrib><description>The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy's properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in the micro-features identification of alloy. However, with the development of the transformer in image recognition, the transformer-based neural network performs better on the learning of global and long-range semantic information than CNN and achieves higher prediction accuracy. In this work, a new transformer-based neural network model Swin-UNet++ was proposed. Specifically, the architecture of the decoder was redesigned to more precisely detect and identify the micro-feature with complex morphology (i.e., dimples) of 2.25Cr1Mo0.25V steel fracture surface. Swin-UNet++ and other segmentation models performed state-of-the-art (SOTA) were compared on the dimple dataset constructed in this work, which consists of 830 dimple scanning electron microscopy (SEM) images on 2.25Cr1Mo0.25V steel fracture surface. The segmentation results show Swin-UNet++ not only realizes the accurate identification of dimples but displays a much higher prediction accuracy and stronger robustness than Swin-Unet and UNet. Moreover, efforts from this work will also provide an important reference value to the identification of other micro-features with complex morphologies.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14247504</identifier><identifier>PMID: 34947098</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial neural networks ; Chromium molybdenum vanadium steels ; Deep learning ; Dimpling ; Failure analysis ; Fracture surfaces ; Hydrogen ; Hydrogen embrittlement ; Image segmentation ; Machine learning ; Morphology ; Neural networks ; Object recognition ; Semantics</subject><ispartof>Materials, 2021-12, Vol.14 (24), p.7504</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-2f28b3d1d3bafde616ce14a7c412b5eaf4a14dae92cd483ce4ffc1b557ffb3763</citedby><cites>FETCH-LOGICAL-c3874-2f28b3d1d3bafde616ce14a7c412b5eaf4a14dae92cd483ce4ffc1b557ffb3763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34947098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy's properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in the micro-features identification of alloy. However, with the development of the transformer in image recognition, the transformer-based neural network performs better on the learning of global and long-range semantic information than CNN and achieves higher prediction accuracy. In this work, a new transformer-based neural network model Swin-UNet++ was proposed. Specifically, the architecture of the decoder was redesigned to more precisely detect and identify the micro-feature with complex morphology (i.e., dimples) of 2.25Cr1Mo0.25V steel fracture surface. Swin-UNet++ and other segmentation models performed state-of-the-art (SOTA) were compared on the dimple dataset constructed in this work, which consists of 830 dimple scanning electron microscopy (SEM) images on 2.25Cr1Mo0.25V steel fracture surface. The segmentation results show Swin-UNet++ not only realizes the accurate identification of dimples but displays a much higher prediction accuracy and stronger robustness than Swin-Unet and UNet. Moreover, efforts from this work will also provide an important reference value to the identification of other micro-features with complex morphologies.</description><subject>Artificial neural networks</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Deep learning</subject><subject>Dimpling</subject><subject>Failure analysis</subject><subject>Fracture surfaces</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Semantics</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1PFDEUhhsjEYLc-ANME2-MZLBf81EvTDarIMmCF4C3Tac93S2ZmS7tjIa_4q-1yy6I9qbn48nb0_Mi9IaSE84l-dhrKpioSyJeoAMqZVVQKcTLZ_E-OkrpluTDOW2YfIX2uZCiJrI5QL-vfvmhuLmE8fj4E57hS0gjWLyp4uuoh-RC7CHiWTQrP4IZpwg41_AiGD36MOBzC8Pond-lerD4IsT1KnRheY-vYNnn_rYXHP7i-3UHCeeMnbByHulFIDn4gU-jflDPj0_RaQOv0Z7TXYKj3X2Ibk6_Xs-_FYvvZ-fz2aIwvKlFwRxrWm6p5a12FipaGaBC10ZQ1pagncgbshokM1Y03IBwztC2LGvnWl5X_BB93uqup7YHa_K4UXdqHX2v470K2qt_O4NfqWX4qZo6b5SILPB-JxDD3ZQXqHqfDHSdHiBMSbEqW8RZU7GMvvsPvQ1THPL3NhSrJeNEZurDljIxpBTBPQ1Didq4rv66nuG3z8d_Qh895n8AEf6pHw</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Liu, Pan</creator><creator>Song, Yan</creator><creator>Chai, Mengyu</creator><creator>Han, Zelin</creator><creator>Zhang, Yu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211207</creationdate><title>Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface</title><author>Liu, Pan ; Song, Yan ; Chai, Mengyu ; Han, Zelin ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-2f28b3d1d3bafde616ce14a7c412b5eaf4a14dae92cd483ce4ffc1b557ffb3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Deep learning</topic><topic>Dimpling</topic><topic>Failure analysis</topic><topic>Fracture surfaces</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Chai, Mengyu</creatorcontrib><creatorcontrib>Han, Zelin</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pan</au><au>Song, Yan</au><au>Chai, Mengyu</au><au>Han, Zelin</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>14</volume><issue>24</issue><spage>7504</spage><pages>7504-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy's properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in the micro-features identification of alloy. However, with the development of the transformer in image recognition, the transformer-based neural network performs better on the learning of global and long-range semantic information than CNN and achieves higher prediction accuracy. In this work, a new transformer-based neural network model Swin-UNet++ was proposed. Specifically, the architecture of the decoder was redesigned to more precisely detect and identify the micro-feature with complex morphology (i.e., dimples) of 2.25Cr1Mo0.25V steel fracture surface. Swin-UNet++ and other segmentation models performed state-of-the-art (SOTA) were compared on the dimple dataset constructed in this work, which consists of 830 dimple scanning electron microscopy (SEM) images on 2.25Cr1Mo0.25V steel fracture surface. The segmentation results show Swin-UNet++ not only realizes the accurate identification of dimples but displays a much higher prediction accuracy and stronger robustness than Swin-Unet and UNet. Moreover, efforts from this work will also provide an important reference value to the identification of other micro-features with complex morphologies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34947098</pmid><doi>10.3390/ma14247504</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-12, Vol.14 (24), p.7504
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8703304
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Artificial neural networks
Chromium molybdenum vanadium steels
Deep learning
Dimpling
Failure analysis
Fracture surfaces
Hydrogen
Hydrogen embrittlement
Image segmentation
Machine learning
Morphology
Neural networks
Object recognition
Semantics
title Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swin-UNet++:%20A%20Nested%20Swin%20Transformer%20Architecture%20for%20Location%20Identification%20and%20Morphology%20Segmentation%20of%20Dimples%20on%202.25Cr1Mo0.25V%20Fractured%20Surface&rft.jtitle=Materials&rft.au=Liu,%20Pan&rft.date=2021-12-07&rft.volume=14&rft.issue=24&rft.spage=7504&rft.pages=7504-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14247504&rft_dat=%3Cproquest_pubme%3E2612792309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612792309&rft_id=info:pmid/34947098&rfr_iscdi=true